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Brain-computer interface (BCI) technologies have traditionally been designed under the assumption that 

BCI users are patients who no longer exhibit any significant motor control abilities, due in part to deficits 

resulting from neuromuscular disease.  Of particular interest is the activity that occurs in motor related areas 

of the brain during precise, dexterous movements of the hand. Previous studies of the central and peripheral 

motor nervous systems suggest the presence of synergistic activations of musculoskeletal groups during 

coordinated movement, however the existing clinical technology has not been sufficient for accurate 

exploration.  Among the many features of the cortical response measured by electrocorticography (ECoG), we 

find that high gamma (75-200Hz) activity in primary motor cortex shows high spatial preference for individual 

digit movements during overt finger flexions. In contrast, the average spatial activity during object grasping 

appears to show little unique spatial organization relative to the grasps performed. To investigate this 

discrepancy, we explore the difference of spatial distribution of activity during dexterous hand movement 

between traditional (10mm-spacing) and high resolution (3mm) ECoG grids.  We find that the informational 
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density present at the higher scale underscores the potential of synergistic dimensionality reduction as a 

possible model of prosthetic control. Complicating the gains from resolution, however, is the remnant hand 

motor function present in a large population of patients interacting with BCIs. This presents a challenge for 

real-world implementation of these systems for therapy and rehabilitation.  Thus, an important question that 

had yet to be systematically studied within the BCI control architecture is: can subjects use BCIs simultaneously 

coordinated with overt motor activity?  We explored this question by testing if patients could effectively learn 

to perform and coordinate bimanual control.  Patients implanted with ECoG electrodes were trained to interact 

with a 2-D BCI center-out cursor task in which one dimension of control was modulated by neural activation 

related to motor imagery and the other dimension was controlled by overt natural movement.  Over the course 

of multiple sessions and days, the subjects gained levels of proficiency and demonstrated accurate control.  In 

addition, this system was implemented for a test case subject with lifelong hemiparesis and significantly 

impaired bilateral motor abilities brought on by a perinatal stroke.  Especially in the stroke case, the subject 

demonstrated significant proficiency and accurate control, despite confounding ipsilateral and contralateral 

neural activations.  As control improved, activation patterns changed across related cortical areas but without 

any significant observable changes in the overt motor behavior.  In gestalt, this work provides steps and a 

framework towards adapting ECoG-based BCIs for patients with similar cortical deficits for the purpose of 

dexterous coordinated hand control. 
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Chapter 1: Specific Aims 
 

With nearly two million people in the U.S. suffering from severe neuromuscular deficits 

resulting from stroke (Grensham, Stason and Duncan, 1995; Wolpaw et al., 2002; Birbaumer, 2006; 

Leuthardt, Schalk, et al., 2006; Bejot et al., 2008; National Institutes of Health, 2009; Gomez-

Rodriguez, Grosse-Wentrup, et al., 2010), central nervous system (CNS) trauma (Wolpaw et al., 2002; 

Amorim, Isableu and Jarraya, 2006; Leuthardt, Schalk, et al., 2006; Sheets, Stein and Manetz, 2006; 

Faul et al., 2010; NSCISC, 2010; Coronado et al., 2011; Eng et al., 2011; Of, 2013),  amyotrophic lateral 

sclerosis or ALS (Grensham, Stason and Duncan, 1995; Wolpaw et al., 2002; Birbaumer, 2006), and 

other neurodegenerative disorders (Wolpaw et al., 2002; Leuthardt et al., 2004; Birbaumer, 2006; 

Demain et al., 2013), there has been considerable interest in brain-computer interfaces (BCIs) for 

cognitive and motor rehabilitation (Wolpaw and McFarland, 1994; Wolpaw, McFarland and Vaughan, 

2000; Wolpaw et al., 2002; Leuthardt et al., 2004). Using a host of hardware and software, a BCI can 

bypass a patient’s damaged neural pathways by translating modulations in electrophysiological 

signals from the CNS into output commands to control external or implanted devices, such as robotic 

prosthetics or spinal stimulators (Schalk et al., 2004; Birbaumer, 2006; Leuthardt, Miller, et al., 2006; 

Blakely et al., 2009; Daly et al., 2009; Blankertz et al., 2010; Brouwer and van Erp, 2010; Jarosiewicz 

et al., 2013). These signals, recorded at the single neuron level or as field potentials across various 

depths and areas in cortical tissue, are representative of cellular actions that drive normal brain 

communication (Wolpaw et al., 2002; Buzsaki, 2006; Buzsáki, Anastassiou and Koch, 2012).  The 

neuron level recordings, while allowing for focally and temporally rich information, are, 

unfortunately, highly surgically invasive (Fetz, 1969; Wolpaw et al., 2000; Buzsáki, Anastassiou and 

Koch, 2012).  Thus, though there is some tradeoff in signal quality, for human patients, field 

potentials, recorded at various distances from the brain with electroencephalography (EEG) at the 

scalp and ECoG arrays directly over cortical tissues from within the skull, provide for a more tractable 

BCI signal. Motor imagery (MI) based BCIs, in which cortical activity changes during imagined motor 

behavior drive control, dominate the landscape of human BCI control paradigms, though not all 

patient populations can necessarily utilize this pathway (Palaniappan et al., 2002; Curran and Stokes, 
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2003; Palaniappan, 2006; Wang et al., 2007; Daly et al., 2009; Faradji, Ward and Birch, 2009; Blankertz 

et al., 2010; Jensen et al., 2011; Myrden et al., 2011).  With recent advances in computing power and 

mobile hardware, significant strides have been made in the realms of signal processing and device 

control using increasingly complicated algorithmic strategies to improve system performance.  

These strategies, however, dependent as they are on coarse representations of cortical 

activity and relying primarily on simplistic single source to end state feed forward models, rarely 

result in intuitive or successful dynamic control schema.  To allow for truly biomimetic control, as 

seen in studies with non-human primates, robust systems with high degrees of freedom must be 

developed.  This necessitates both a better understanding of the cortical dynamics during BCI control 

as well as an improved resolution in the recorded signals without additional invasiveness.  Our central 

hypothesis is that with improved signal resolution and a naturalistic architecture designed around 

bimanual coordination, users will learn BCI control faster and with better performance, and be able 

to utilize systems with a higher degree of complexity.  Specifically, we:  

Aim 1: Develop a bimanual framework to examine the dynamics of hemispheric 
control 

Brain-computer interface (BCI) technologies have traditionally been designed under the 

assumption that BCI users are patients who no longer exhibit any significant motor control abilities. 

However, there is a much larger population of patients who retain some residual motor function, 

who could benefit significantly from BCIs. An important question that has yet to be systematically 

studied is: can subjects use BCIs simultaneously coordinated with overt motor activity, e.g., for 

bimanual control?  To that extent, we designed a set of bimanual BCI tasks, tested initially with 

subjects using a noninvasive electroencephalographic (EEG) framework, to determine the logistical 

implications and constraints of bimanual coordination of motor imagery and overt motor control. 

Aim 2: Evaluate changes in cortical dynamics during coordinated bi-manual control 
of a virtual object 

The ability to volitionally control brain activity without modifying overt behavior is very 

important in BCI applications. However, motor and cortical deficits vary widely across patient 

populations. In many cases, there remains residual cortical activity related to motor and 

somatosensory execution. These residual signals are unlikely to be suppressed during BCI use, instead 

co-activating during control.  This would especially occur during any sort of bi-manual task needed 
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for daily function. Through this aim, we utilize electrocorticography (ECoG) to examine distributed 

changes in cortical activity related to simultaneous overt and imagined motor behavior during bi-

manual control of a virtual object.  In addition, we further examine the transient changes during the 

BCI learning process to evaluate possible markers of cortical adaptation during BCI use related to the 

coordination of multiple control schema. 

Aim 3: Demonstrate the feasibility of coordinated bimanual BCI control for patients 
with neuromuscular disease 

Nominally, almost all BCI research is motivated by particular disease states.  However, the 

preponderance of non-invasive and semi-invasive studies focus primarily on cognitive or behavioral 

experiments with ‘healthy’ subjects without truly evaluating the scalability to applications for real 

use cases. Here we show that a subject with lifelong hemiparesis implanted with ECoG electrodes can 

learn to perform a 2-D BCI center-out cursor task in which one dimension of control is modulated by 

motor-imagery related ECoG activity and the other dimension is controlled by overt natural 

movement. Furthermore, we explore the effects of confounding ipsilateral and contralateral neural 

activation due to natural movements on BCI control. We also investigate task-related adaptation 

across cortical areas in the hybrid BCI-manual control task and its relationship with overt motor 

behavior. 

Aim 4: Evaluate cortical representations of human hand dynamics for online control 
of a robotic hand 

Traditional control paradigms transform gross hand movements or imagined hand 

movements into single-axis cursor control. For dexterous control of an actual robotic hand or 

prosthetic with up to twenty-one degrees of freedom, a single degree of control is insufficient, 

especially in consideration of bimanual coordination. However, from a mechanistic control 

perspective, the brain is also likely utilizing some form of dimensionality reduction to affect its own 

control of the hand. We hypothesize, this may be represented cortically as differing patterns of 

activity related to prototypical finger and hand movements. Here we show that clinical ECoG grids, 

though functional, may not necessarily be sufficient to fully decode these patterns. High-density 

micro-ECoG arrays may be key in enabling robust control and control of a virtual hand or robotic 

system. 
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Providing a framework to train bimanual naturalistic dynamic control during closed-loop 

control of BCIs will enable our long-term goal to develop advanced BCIs for real world applications. 

Successful implementation of these aims will also lead to an enhanced understanding of the neural 

dynamics of cortical control during high-dimensional volitional modulation of electrophysiological 

signals. The proposed work promises to develop better understanding of how improved signal scale 

and bimanual coordination can influence the way the subjects adapt within an abstract BCI 

framework as well as how signals from the brain can be used to convey information and used for 

control in future therapy or rehabilitative applications. 
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Chapter 2: Neuromuscular Disease and the Rise of the BCI 
 

The philosophy of embodied cognition would hold that an agent's cognition is strongly 

influenced by aspects of said agent's body beyond the brain itself.  Put more simply, an individual’s 

perceptual self and corresponding actions can be defined or shaped by their physicality as juxtaposed 

with the world around them.  Indeed, an individual’s ability to physically interact with the world often 

defines their identity or sense of self.  Unfortunately, there exist a host of neuromuscular disorders 

and physical impairments, with a vast range of etiologies, which can severely impact an individual’s 

somatosensory function and volitional motor abilities.  Individuals with these types of impairments 

are often no longer able to dexterously move within or manipulate their environments or find 

themselves incapable of physically communicating. In many cases, their impairments result in the 

loss of both types of behavior.  Promisingly, due to many of the ongoing advancements in robotics, 

machine learning, wearable computing, material fabrication, and neurophysiological bio-sensing, the 

field of neural engineering has developed to the point of being able to develop brain computer 

interface (BCI) technologies that may give researchers and clinicians the opportunity to restore these 

lost functions for affected populations.  However, BCI devices are currently quite limited and do not 

perform well enough to fully replace or advance beyond the current state of the art therapies or 

treatments.  To understand how these systems might be improved or redesigned for better efficacy, 

we must first examine the nature of impairment and the corresponding development of BCIs. 

2.1 The Nature of Impairment 
Neuromuscular disorders are a broad class of ailments that can cause loss of function through 

one or more of the following means: (1) by disrupting the central nervous system’s ability to generate 

an appropriate motor command, (2) by disrupting the transfer of information from the central to the 

peripheral nervous system, or (3) by disrupting the peripheral nervous system’s ability to effectively 

execute that motor command.  Amyotrophic lateral sclerosis is one type of disorder, and likely the 

most historically cited for BCI development, which in its advanced stages causes the most severe 

types of broad function loss.  However, there are numerous others including traumatic brain injury, 

stroke and spinal cord injury. These disorders have been seen to already affect nearly two million, 

and growing, people in the United States, and many more worldwide (Murray et al., 1996).  Severity 

varies from patient to patient, and can range from mild impairment of motor function to complete 
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loss of voluntary muscular control (i.e., in the case of late stage ALS), an affliction that is referred to 

as locked-in syndrome (Smith and Delargy, 2005).  

Current treatments for neuromuscular disorders vary widely in concordance with the severity 

of the ailment, but can be separated into two primary groups. In the event that limited muscular 

function remains (e.g., some cases of ischemic stroke or incomplete spinal cord injury), rehabilitative 

physical therapy (Pascual-Leone et al., 2005) may be used as a recourse to attempt to restore as much 

of the lost function as is possible. Experimental enhancement of physical therapy via transcranial 

magnetic stimulation (TMS) (Plautz et al., 2003; Harvey and Nudo, 2007), transcranial direct-current 

stimulation (tDCS) (Schlaug, Renga and Nair, 2008), and direct cortical stimulation (DCS) (Adkins-Muir 

and Jones, 2003; Adkins et al., 2006; Adkins, Hsu and Jones, 2008; Huang et al., 2008; Levy et al., 

2008; Plow et al., 2009) has also being explored in the past decades to limited success.  In cases where 

rehabilitative therapies are not an option, such as in the advanced stages of ALS or other degenerative 

disorders, other means have been explored to replace lost function using eye-tracking and blink 

interfaces (Doble et al., 2003) or other types of assistant-mediated communication (Wu and Voda, 

1985). Though these strategies have been effective at providing some patients with a simulacrum of 

their original function, they leave much to be desired in terms of complete restoration or 

replacement. 

2.2 The Rise of Neural Interfaces 
In response to this clinical need, over the past two decades, many researchers have been 

investigating directly interfacing with the nervous system as a means to create rehabilitative and 

assistive devices that would provide patients with a significantly greater portion of their original 

function than the current standard of care (for more in-depth reviews see Green & Kalaska, 

2011(Green and Kalaska, 2011); Moran, 2010; Wander & Rao, 2014; Wolpaw et al., 2002). 

Researchers have been attempting to build interfaces to the nervous system at a number of different 

levels, including the cerebral cortex, the spinal cord, and even the neuromuscular junction; the 

versions of these devices that interface with the cortex are referred to as BCIs or alternatively brain-

machine interfaces (the latter primarily in the context of animal studies). In the context of restoring 

lost motor output, the purported mechanism of action for an assistive BCI is to record neural activity 

‘upstream’ of where an ailment has impacted the nervous system, and then decode that activity to 

determine the patient’s intended action, an external device can be driven to carry out that action. 
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The current major testbeds for BCI research can be categorized into the following: cursor control and 

communication in tetraplegic and locked-in patients (Kübler et al., 2001; Hochberg et al., 2006) and 

neural control of prosthetic arms (Pfurtscheller et al., 2000; Carmena et al., 2003; Velliste et al., 2008).  

As alluded to before, many researchers have focused on the latter population of patients as 

appropriate short-term targets since the prospect of restoration of communication to locked-in 

patients may soon outweigh the risk associated with the current invasiveness of many BCI electrode 

implantation procedures (Moran, 2010; Gilja et al., 2011).  

It is important to note that BCI is, in itself, a non-specific term applied to a variety of system 

architectures ranging from BCIs for motor control to deep brain stimulators (DBS) for the treatment 

of clinical depression and beyond.  As per the clinical considerations discussed so far, for the duration 

of this section, the focus will be to provide of brief review of the state of the art for motor control 

based BCIs.  Correspondingly, we consider only BCI schema which leverage volitional modulation of 

neural activity for the manipulation of some type of end effector, i.e., a computer cursor or robotic 

limb analog. In the foundational work of this field, Fetz and colleagues demonstrated in non-human 

primates that, when given feedback, the brain could learn to volitionally modulate the activity of 

single neurons (Fetz, 1969). In this experiment, the estimates of individual firing rates of a small 

number of cortical neurons were mapped directly to a simple visual feedback device, and the subject 

developed the capacity to modulate these firing rates, effectively controlling a simple, one-

dimensional (1-D) BCI.  A similar feat was accomplished decades later in humans by Wolpaw and 

colleagues using, in this case, a non-invasive approach, mapping spectral (mu-beta) changes recorded 

at the scalp to vertical control of a cursor on a computer monitor (Wolpaw et al., 1991). Since these 

initial studies, the primary investigative and engineering push in the field has been to increase the 

dexterity, robustness, and clinical viability of these devices across all scales of electrophysiological 

investigation, with a corresponding disparity in the functional ability of the “state of the art” related 

to the degree invasiveness.  In humans, aggregate activity from a large numbers of neurons (field 

potentials) has been used to control end effectors in up to three dimensions (McFarland, Sarnacki 

and Wolpaw, 2010; Wang et al., 2013) with the high-bar currently set by Collinger and colleagues 

who were able to train a human user in their system to control a seven degree of freedom (DOF) 

robotic arm using neural signals recorded with a microelectrode implant (Collinger et al., 2013). 

Unfortunately, direct comparison across these and other experiments is extremely difficult because 
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of inconsistencies in task paradigms and evaluation metrics (Thomas, Dyson and Clerc, 2013). In 

addition, in recent years, the convergence of system scale and robotic automaticity, has changed the 

benchmarks and focus of many of these studies towards more coadaptive bidirectional action-

perception frameworks (Gage et al., 2005; Vidaurre et al., 2011; Faller et al., 2013). 

There are a number of impediments to the long-term clinical deployment of brain-computer 

interfaces, including host-response to implanted electrodes, long-term power requirements, and 

wireless communication of neural signals to remote devices. One of the largest road-blocks in the 

development of these devices is simply that their performance relative to the current standard of 

care is not good enough to warrant the risk and cost to the patient (Gilja et al., 2011). As a result, 

there is a collective push in the field to increase BCI performance in applications that restore a 

patient’s ability to communicate or to control external devices. There are a number of approaches 

being investigated; the two most common being an increase of coverage density in motor cortex (i.e., 

higher number of input channels per unit area) and development of more sophisticated decoding 

algorithms (i.e., extracting more robust signals from the input channels). Recent work by the Schwartz 

(Wang et al., 2013) and Shenoy (Gilja et al., 2012) groups, respectively, provides examples of 

developments in these two directions. Other groups are working in a different, but potentially 

complimentary direction, constructing BCI systems that maximize the performance gains made 

possible by the tremendous adaptive capability of the brain (Orsborn et al., 2012).  

An important point to note, however, is that the vast majority of BCIs harness signals recorded 

solely from primary motor cortex (M1) or premotor cortex (PMv / PMd) (Wolpaw et al., 1991; Blakely 

et al., 2009; Simeral et al., 2011; Wang et al., 2013). An exception to this is the line of research being 

pursued by Andersen and colleagues that utilizes activity patterns in posterior parietal cortex (PPC) 

(Mulliken, Musallam and Andersen, 2008) though this approach still utilizes firing rate changes in a 

single cortical area to achieve BCI control. In addition, work out of our group (Wander and Rao, 2014), 

examining the nature of BCI learning, underscores what we know from a vast body of 

electrophysiological and imaging motor studies, that the generation of dexterous, goal-directed 

movement is a coordinated effort on the part of multiple cortical areas, and that the functional roles 

being carried out in these areas are diverse. Correspondingly, we posit that BCI schema may benefit 

significantly from the analogous incorporation of multiple streams of task-relevant information 

across a variety of cortical sources. One example of this type of BCI scheme might be a system which 
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decodes, from one set of cortical structures, an individual’s higher-level goal and, from another area, 

the low-level BCI motor commands they are utilizing and utilizes both channels of information to 

improve BCI performance (Shanechi et al., 2013). This notion of hybrid BCI is discussed more in 

chapter 6 where we employ control signals at multiple levels of abstraction to attempt bimanual 

control (Cheung et al., 2012), but overall it has yet to reach its full potential.  However, to better 

understand the difference in these approaches, it is important to examine the difference in the 

underlying electrophysiological scale of the systems. 

2.3 Electrophysiological Models for BCI 
There are two primary classes of physiologic signals used to drive BCIs: electrophysiologic or 

hemodynamic.  Electrophysiological recordings range in scale and invasiveness from highly-invasive 

single-unit activity (Carmena et al., 2003; Lebedev et al., 2005; Jackson, Baker and Fetz, 2006; Moritz, 

Perlmutter and Fetz, 2008) and local field potentials (LFP) (Moran, 2010) to semi-invasive 

ECoG(Felton et al., 2007; Schalk et al., 2008; Blakely et al., 2009; Krusienski and Shih, 2011; Wander 

et al., 2013) and finally to non-invasive electroencephalography (EEG) (Moran, 2010; Pfurtscheller, 

2010) or magnetoencephalography (MEG) (Mellinger et al., 2007). Hemodynamically driven BCIs 

typically rely on noninvasive methods such as blood-oxygen level dependent (BOLD) changes as 

measured by fMRI (Sitaram et al., 2008) or functional near infra-red spectroscopy. Alternative 

modalities such as optogenetic and ultrasound-based imaging methods also exist, though these are 

much less common and not necessarily scalable across species to humans. As indicated previously, 

we will instead focus on electrophysiological recordings and discuss the relative merits and demerits 

of each ‘scale’ in the context of real-time BCI for control of an abstract end effector.  In addition, 

further sections below will examine our group’s work with ECoG and why it is, perhaps, the most 

appropriate signal modality for the work described throughout this document. The methods used to 

acquire these signals range from very invasive (single unit activity and LFP) to minimally or semi- 

invasive (ECoG) to non-invasive (EEG). In general, there is a formidable tradeoff with spatial 

resolution, temporal resolution, or both as less invasive signal acquisition methods are used (Moran, 

2010; Gilja et al., 2011). The majority of BCI experiments as well as pre-clinical BCI applications (Flor 

et al., 1995; McFarland, Lefkowicz and Wolpaw, 1997; Birbaumer et al., 2000; Pfurtscheller et al., 

2000; Wolpaw and McFarland, 2004) use EEG as a signal source because it is non-invasive, healthy 

test subjects are readily available, the necessary equipment is comparatively inexpensive, signal 
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quality typically does not degrade over time, and the use of EEG in humans does not impose the same 

regulatory burdens as ECoG or microelectrode recordings. Within the EEG modality, BCIs have been 

constructed that use evoked potentials such as the visual evoked potentials in the P300 speller, 

volitional changes in slow cortical potentials, and volitional event-related desynchronization and/or 

synchronization of the sensorimotor rhythms (SMR) mu and beta (Wolpaw et al., 2002). Regrettably, 

there are a number of factors that currently make EEG poorly suited for clinical deployment and for 

the purposes of the study described below. First, the dura mater, cerebrospinal fluid (CSF), skull and 

scalp collectively act to spatially mix and low-pass filter the true cortical potentials, such that the 

potentials recorded at the surface of the scalp have lost tremendous spatial specificity and typically 

do not contain frequency content above approximately 60 Hz. Second, EEG is easily contaminated by 

surface electromyographic (EMG) potentials as well as ambient electromagnetic noise (e.g., 50/60 Hz 

line noise) resulting in a relatively poor signal to noise ratio (SNR). As a result, EEG-based BCI typically 

use classification-based decoder architectures (selecting from a discrete set of control parameters) 

as opposed to regression-based decoder architectures (mapping to a continuous space of control 

parameters), and require longer time intervals over which to average observations to collect a 

statistically robust assessment of the underlying neural activity. 

At the other end of the spectrum are electrophysiological recordings made using invasive 

microelectrodes, such as the Utah electrode array (UEA), a microelectrode array consisting of 100, 1-

1.5 mm long electrodes configured in a 10x10 grid with an inter-electrode spacing of 300-400 μm. 

The electrodes themselves are shielded along the shank and conductive only at the tip. It is 

immediately apparent that there is a tremendous difference in spatial specificity between the UEA 

and an EEG system. However, it is important to note that the UEA itself records from an area of less 

than 13 square millimeters, making correct placement over anatomical areas a critical component of 

experimental design and execution; microelectrode recordings from distributed cortical sites require 

multiple implants. The UEA and other microelectrode recording devices are designed to record 

extracellular action potentials and LFPs from nearby cell bodies, thus they are typically placed such 

that the conductive tip sits as near to the layer V pyramidal neurons as possible. Action potentials 

recorded from these neurons provide an extremely high-fidelity signal that has been utilized in a BCI 

for continuous end effector control on numerous occasions (e.g., Fetz, 1969; Simeral et al., 2011). 

Though these signals provide excellent fidelity and have been demonstrated to be highly capable of 
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adaptation to task requirements (Fetz, 1969; Fetz and Baker, 1973; Ganguly and Carmena, 2009; 

Ganguly et al., 2011), the long-term recording of activity from single units is a difficult technical task 

that has yet to be solved completely. Though there are limited instances of microelectrode implants 

that can still record sufficient neural activity to control a BCI up to 3 years post-implant (Simeral et 

al., 2011), in most cases, either due to movement of the array or underlying physiological changes 

such as those from a foreign body response (Shain et al., 2003), intracortical implants are functionally 

limited to shorter operating time-frames (Kipke et al., 2008). 

A signal modality that strikes a compromise between these two is ECoG. ECoG is referred to 

as a minimally invasive recording technique as it still requires surgery to implant the necessary 

electrodes, but the electrodes lie on (instead of penetrating) the pial surface. ECoG has even been 

demonstrated to allow for successful acquisition of spectral components up to 200 Hz when recorded 

epidurally (Gomez-Rodriguez, Grosse-Wentrup, et al., 2010), potentially further lessening its 

invasiveness. ECoG signals are almost exclusively acquired in the context of clinical treatment for 

intractable epilepsy wherein patients undergo long-term monitoring (approximately seven days) of 

ECoG activity during ictal events for the identification and eventual resection of a seizure focus. 

Within the context of motor function and cognitive processing, there are two frequency ranges of the 

ECoG signal that have been focused on heavily in the literature. They are a band-limited, low 

frequency feature (12-25 Hz), which is the ECoG correlate of the mu-beta rhythm discussed in EEG 

literature, and a broadband, high frequency feature (70-200 Hz), referred to as high-gamma (HG). 

Changes in HG activity have been postulated to reflect changes in the overall firing rate and/or firing 

synchrony of underlying neural populations (Miller et al., 2007; Ray et al., 2008). Changes in HG 

activity are more spatially focal than changes in the mu/beta band (Miller et al., 2007), and have 

subsequently been used more often in research that uses the ECoG signal modality as a temporally 

and spatially local indicator of underlying cortical processing. This signal has been applied to a number 

of ECoG BCI paradigms, typically with changes in spectral estimates of HG power being directly 

mapped to end effector control parameters (Schalk et al., 2008; Blakely et al., 2009). 

2.4 Brain-computer Interfaces and Electrocorticography  
A little over a decade ago, ECoG cortical potentials were first leveraged as control signals for 

a BCI application (Leuthardt et al., 2004). Since that time, a number of subsequent studies have 

demonstrated not only that ECoG BCI users are capable of performing multiple simultaneous types 
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of motor imagery to achieve multiple dimensions of control (Schalk et al., 2008; Wang et al., 2013), 

but also that ECoG BCI can be successfully used over multiple days without the need for classifier 

retraining (Blakely et al., 2009). ECoG BCIs are generally controlled through volitional modulation of 

HG activity at one or more electrodes; in humans, initial execution of the task is done through the 

use of a motor (e.g., hand motor imagery) or cognitive (e.g., mental arithmetic) task that modulates 

activity in the controlling electrodes. Because clinical-scale ECoG grids typically cover approximately 

64 cm2 of cortical tissue, and are only controlled by a subset of the electrodes in the grid, ECoG BCIs 

provide an excellent opportunity to probe the nervous system for additional physiological details 

relevant to BCI use (Wander & Rao, 2014). One example of this is a recent study demonstrating a 

spatially focal change in sleep spindle density correlated with training on BCI task, a finding suggestive 

of offline learning taking place in the brain after having the opportunity to perform the highly novel 

BCI task (Johnson et al., 2012).  Additionally, this study was followed by another which showed that 

BCI learning closely mimics general motor learning (Wander et al., 2013) in terms of cortical areas 

affected or involved during the learning process.  Both were produced by our research group. 

2.4.1 Disadvantages of ECoG BCI 
It is important to note that ECoG data are collected in an opportunistic recording model. With 

few exceptions, ECoG subjects are undergoing long-term monitoring for epileptic focus identification 

and resection. Depending on the etiology of their epilepsy, these subjects can exhibit a range of 

neural complications, including but not limited to inter-ictal activity and cortical reorganization (Hill 

et al., 2012). The full extent of how epilepsy impacts the nervous system is still largely unknown and 

likely varies across individuals; conclusions drawn from studies based on this patient population must 

be accompanied by this consideration. In addition to this, the median duration of observation for 

epileptics undergoing this procedure is 7d. Typically subjects are neither able nor willing to participate 

in research studies until the third or fourth post-operative day, which limits the amount of training 

time a given subject can receive on the BCI to at most four days. Extensive studies on cortical 

adaptation associated with BCI (e.g. responses to perturbation after the user achieves a learned state) 

use are extremely difficult under these circumstances. 

2.4.2 Advantages of ECoG BCI 
These caveats to the research use of ECoG recordings notwithstanding, ECoG-based BCIs 

possess several advantages relative to SUA and EEG-based BCIs that make them the appropriate tool 
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for the inquiry discussed in this document. First, because the electrodes are not typically moved from 

day-to-day, and the cortical potentials are fairly stationary, ECoG BCIs allow for robust control over 

the course of multiple days without retraining of the classifier (Blakely et al., 2009). ECoG recordings 

easily remain consistent over multiple days, and have been shown to perform well for up to 30 days 

(Wang et al., 2013) with daily classifier updates. Relative to scalp surface potentials, ECoG presents 

an excellent opportunity for BCI research because, as of yet, there are no robust computational 

algorithms for extracting spatially focal HG activity from EEG on a single trial basis. Work is being 

performed to construct an inverse model that will permit us to back project likely cortical sources of 

EEG data (Darvas et al., 2004, 2010), thus increasing SNR and potentially providing access to 

information in the HG range at the scalp. As was mentioned above, ECoG provides an excellent 

compromise (relative to EEG and microelectrodes) of spatial distribution of coverage and signal 

fidelity, making it an appropriate tool for the investigation of activity patterns in diverse cortical areas 

during BCI use as well as enabling schema with multi-site control. 

To that extent, however, it becomes important to understand the actual nature of motor 

control and the dynamics of this control within the abstracted BCI architecture.  Though ECoG might 

be an ideal modality of recording, without an understanding of the areas in consideration, nor the 

aspects of behavior and control that are relevant to natural volitional movement, our methods may 

be doomed to misery.  The following chapters attempt to examine these issues before describing our 

raison d'être, incorporating dynamic dexterous bimanual control within the framework of brain-

computer interfaces.  
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Chapter 3: Effecting Control I – The Brain & Motor Control 
 

Motor control can refer to the cognitive or physiologic processes by which humans and 

animals activate and coordinate the muscles and limbs involved in the performance of a motor skill. 

Fundamentally, it is the integration of sensory information, both about the world and the current 

state of the body, to determine the appropriate set of muscle forces and joint activations to generate 

some desired movement or action. This process requires cooperative interaction between the central 

nervous system and the musculoskeletal system, and is thus a problem of information 

processing, coordination, mechanics, physics, and cognition (Mitz and Wise, 1987; Vaid, 2002; 

Rosenbaum, 2009). Successful motor control is crucial to interacting with the world, not only 

determining action capabilities, but regulating balance and stability as well. The organization and 

production of movement is a complex problem and so, accordingly, the study of motor control has 

been approached from a wide range of disciplines, including psychology, cognitive 

science, biomechanics, and neuroscience.  While the modern study of motor control is an increasingly 

interdisciplinary field, the corresponding research questions have historically been defined as 

either physiological or psychological, depending on whether the focus is on physical and biological 

properties, or organizational and structural rules (Schmidt, 1988).  Brain-computer interfaces attempt 

to bridge various aspects of these properties to restore “lost” function.  As such it is important to 

have some familiarity with both the physiologic and behavioral models of motor control to identify 

the aspects in which BCIs become relevant in situations of deficit or damage. 

3.1 Relevant Motor- and Neuro- Physiology  
An extensive review of neurophysiology and motor physiology is beyond the scope of this 

document. For additional information, the reader is encouraged to review the seminal text by Kandel 

and Schwartz (Kandel & Schwartz 2012). However, in an effort to provide context for the 

experimental designs, results, and discussions that follow, we will provide a brief summary of the 

cortical structures relevant to BCI use, and the underlying neurophysiology that is leveraged in the 

electrophysiological recording models described below. 

3.1.1 Components of the Motor Cortex 
Three prominent areas of the motor cortical system are: 
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1. The primary motor cortex (M1) is the main contributor to generating neural impulses that 

pass down to the spinal cord and control the execution of movement. However, some of 

the other motor areas in the brain also play a role in this function. M1 is located on the 

anterior paracentral lobule on the medial surface and is the focus of most BCI motor 

studies. 

2. The premotor cortex (PMC) is responsible for some aspects of motor control, possibly 

including the preparation for movement, the sensory guidance of movement, the spatial 

guidance of reaching, or the direct control of some movements with an emphasis on 

control of proximal and trunk muscles of the body.  PMC is located anterior to the primary 

motor cortex 

3. The supplementary motor area (or SMA), has many proposed functions including the 

internally generated planning of movement, the planning of sequences of movement, and 

the coordination of the two sides of the body such as in bi-manual coordination.  SMA is 

located on the midline surface of the hemisphere anterior to the primary motor cortex 

The posterior parietal cortex (PPC) is sometimes also considered within the motor cortical areas; 

however it is best to regard PPC as more of an association cortex rather than motor. It is thought to 

be responsible for transforming multisensory information into motor commands, in addition to being 

responsible for some aspects of motor planning, as well as many other functions that may not be 

motor related. 

The primary somatosensory cortex, especially the part called area 3a (as per the Brodmann 

Area referencing convention, Brodmann 1909), which lies directly against the motor cortex (see 

Figure 1), is sometimes considered to be functionally part of the motor control circuitry. Other brain 

regions outside the cerebral cortex are also of great importance to motor function, most notably 

the cerebellum, the basal ganglia, pedunculopontine nucleus and the red nucleus, as well as other 

subcortical motor nuclei.  These structures are deeper and not readily accessible by most current 

electrophysiological recording modalities and, as such, are not within the scope of most BCI studies. 

3.1.2 Primary Motor Cortex 

The cerebral cortex is spatially organized into areas that have been linked with specific 

functions, initially through post-mortem correlation of behavior with the locations of damage or 
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lesion (Brinkman, 1981), and now, through in vivo functional imaging and electrophysiology. When 

locating cortical areas associated with motor outputs from the body, one of the most important 

cortical landmarks to identify is the central sulcus (marked in red in Figure 1), which starts at the 

lateral fissure and travels superiorly and posteriorly. It separates the frontal lobe and the parietal 

lobe. Canonically, the gyrus anterior to the central sulcus, called the pre-central gyrus, is referred to 

as M1, though cytoarchitectonic delineations specify that M1 comprises only the posterior half of the 

lateral portion of the pre-central gyrus (M1 corresponds to Brodmann Area [BA] 4). The majority of 

descending afferent motor tracts that carry neural activity that will eventually result in motor output 

originate in M1. 

 

Figure 1 – Drawing of generalized Cortex with anatomical labels.  Lateral view of the human brain, the central 
sulcus is highlighted in red. Image is public domain, source: http://commons.wikimedia.org 
 

As was determined in the 1930s (Penfield & Boldrey, 1937), motor cortex itself is 

somatotopically organized such that the motor outputs of the body are represented in an orderly 

fashion across M1. This can be seen in the image of the motor homunculus, below. Another feature 

of the motor representation on M1 that is important to the use of these neural populations for BCIs 

is that the amount of cortical area dedicated to a specific part of the body is related to the degree 
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and precision of motor control executed in that part. Consequently, the motor cortical representation 

of face and hand movements is very large in humans and non-human primates (NHPs).  

 

Figure 2 - Cartoon of the Motor and Somatosensory Homunculus. Relative arrangement of M1 and SMA shown in 
regards to the functional anatomy or function.  Hand and Tongue areas are highlighted.  Image is public domain, 
source: http://commons.wikimedia.org 

  

This large representation of hand and face movement, combined with the somatotopic 

organization of M1 is one of the primary reasons that it is often selected as a target site for BCI, 

however there are other critical reasons that should also be noted. First, layer V of M1 contains the 

cell bodies of many large pyramidal neurons, from which extracellular recordings can be readily 

taken, and which (because of the orientation of their dendritic arbor and their columnar organization) 

generate relatively discernible cortical and scalp potentials. Second, an extensive foundation of 

motor electrophysiology studies has demonstrated strong directional tuning between M1 pyramidal 

neurons and position and velocity of distal limbs, allowing for BCI decoders to be seeded with 

parameters derived from neural recordings taken during overt motor movement. 

3.1.3 Non-M1 Frontal Cortices 
Directly anterior to M1 and extending from the lateral sulcus to the superior frontal sulcus is 

the premotor cortex (BA 6), which is further divided into dorsal and ventral areas (PMd and PMv). 

Superior to this and wrapping around to the medial aspect of the brain, stopping at the cingulate 

sulcus is the supplementary motor area (SMA); coverage of this portion of the brain is exceedingly 
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rare in an ECoG epilepsy model and is thus not discussed extensively in the remainder of this 

document. Premotor areas, on the other hand, are commonly covered during epilepsy monitoring 

and thus provide an excellent first candidate region for BCI-relevant extra-M1 neural activity. PMv 

has been studied extensively in NHPs, and is traditionally held to be involved in preparatory motor 

activity related to hand motion (Rizzolatti & Luppino, 2001; Weinrich & Wise, 1982) , and during the 

movement for both reaching and grasping actions (Xiao et al., 2006). Additionally, so-named “mirror 

neurons” in PMv have been seen to respond to observation of relevant movements (Rizzolatti et al., 

1996). 

Though also active during preparation (Mauritz & Wise, 1986), PMd has been demonstrated 

previously to be more associated with trajectory planning and control of the more proximal 

musculature involved in reach motions (Pesaran et al., 2006). In an NHP model, cells have been found 

in PMd that respond to changes in characteristics of the target of a reach (Shen & Alexander, 1997), 

which, when taken with the above, implies a role for PMd in the translation of a reach target to a 

motor command through the use of internal models. Collectively, the area of brain anterior to the 

premotor areas is called prefrontal cortex (PFC), further subdivided into a number of regions that 

vary, to some degree depending on the body of literature in which they are being discussed. In 

general PFC is considered the cortical center for executive control (Fuster, 2000) and a critical region 

for orchestrating coordinated complex behaviors to achieve higher- level goals (Miller & Cohen, 

2001). Various regions of the PFC have also demonstrated involvement in complex, goal-driven 

behavior in both human (Rudorf & Hare, 2014) and NHP (Kobayashi et al., 2007) models.  

3.1.4 Parietal and Temporal Cortices 
Posterior to the central sulcus is primary somatosensory cortex (S1; BAs 1-3). Though it is not 

discussed extensively in the context of this document, it is one of the sensory processing areas – along 

with auditory and visual processing areas – that provides sensory information to its more caudal 

neighbor, the posterior parietal cortex (PPC; BAs 5 and 7). PPC is a group of cortical regions, located, 

as the name implies, in the posterior portion of the parietal lobe. It is bisected by the intraparietal 

sulcus (IPS) into the superior and inferior parietal lobules (SPL and IPL, respectively). The PPC on the 

whole is an associative cortical region implicated in planning and online control of visually guided 

movements (Buneo & Andersen, 2006a; Mulliken et al., 2008). A significant amount of work has gone 

into understanding the subregions of PPC and their particular functional roles in the variety of motor 
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movements carried out by primates (reviewed in Vesia & Crawford, 2012). It is worth noting that the 

terminology between the two species differs and can be confusing. In NHPs, we commonly discuss 

three major regions the PPC: the parietal reach region (PRR), the lateral intraparietal area (LIP), and 

the anterior intraparietal area (AIP). These areas are classically associated with reaching, saccades, 

and grasping respectively (Rizzolatti et al., 1998). The human homologues are slightly less well 

defined, but they are the mid-posterior IPS (mIPS), mIPS and the parieto-occipital sulcus (SPOC), and 

the anterior IPS (aIPS), respectively. Recent imaging studies have begun to demonstrate similar roles 

for these regions, though the functional separations do not appear to be as strict (Gallivan et al., 

2011, 2013).  

Inferior to the IPL, surrounding the supramarginal gyrus, where the temporal and parietal 

lobes meet is a region called the temporoparietal junction (TPJ; BAs 22, 39 and 40). Though not 

explicitly involved in reach and grasp planning, the TPJ is implicated in a number of cognitive 

functions. Of particular interest to its potential role during BCI execution is evidence of involvement 

in bottom-up modulation of sensory inputs relevant for target selection (Geng & Mangun, 2011).  

Anterior and inferior to this is another cortical region of interest, namely the posterior portion 

of the superior temporal gyrus (STG). Classically thought to be involved primarily in emotional, social 

and language-related processing (Friederici & Rueschemeyer, 2003; Radua et al., 2010), the STG has 

recently been demonstrated to be involved in multiple cognitive processes that may be highly 

relevant to neuroprosthetic control. More specifically, the posterior portion of the STG has been 

demonstrated to be activated during selective processing of visual stimuli (Hopfinger et al., 2000) and 

during observation of geometric shapes that were following goal-directed trajectories (Schultz et al., 

2004).  The discovery and understanding cognitive process as per the particular cortical areas are also 

key aspects of the behavioral models alluded to initially and discussed further below. 

3.2 Considerations for Modeling Motor Control with BCI 
Beyond understanding the direct function of physiologic areas that could be replaced by 

specific targeted brain-computer interfaces, it is important to understand the behavioral models in 

which most BCI schema will generally find themselves couched in consideration of restoring lost 

function. These models also closely mimic traditional control theory approaches for distributed 

electronic systems. 
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3.2.1 Sensorimotor Feedback 
 The way bodies move in response to external and internal stimuli (perceptive and 

proprioceptive) is a key component of motor controls and greatly affects the development and 

execution of motor programs.  There are two general schema into which these strategies fall. 

3.2.1a Closed Loop Control 

The classical definition of a closed loop system for human movement comes from Jack A. 

Adams:  

“A closed loop system has feedback, error detection and error correction as key elements. 

There is a reference that specifies the desired value for the system, and the output of the system is 

fed back and compared to the reference for error detection and, if necessary corrected... A closed 

loop system is self-regulating by compensating for deviating from the reference.”(Adams, 1971) 

Most movements that are carried out during day-to-day activity are formed using a continual 

process of accessing sensory information and using it to more accurately continue the motion. This 

type of motor control is called feedback control, as it relies on sensory feedback to control 

movements. Feedback control is a situated form of motor control, relying on sensory information 

about performance and specific sensory input from the environment in which the movement is 

carried out. This sensory input, while processed, does not necessarily cause conscious awareness of 

the action. Closed loop control is a feedback based mechanism of motor control, where any act on 

the environment creates some sort of change that affects future performance through feedback 

(Schmidt, 1988). Closed loop motor control is best suited to continuously controlled actions, but does 

not work quickly enough for ballistic actions. Ballistic actions are actions that continue to the end 

without thinking about it, even when they no longer are appropriate.  However, as this type of 

feedback control relies on sensory information, it is naturally constrained to be as slow as sensory 

processing. These movements are also subject to a speed/accuracy trade-off, because sensory 

processing is being used to control the movement, the faster the movement is carried out, the less 

accurate it becomes. 

3.1.1b Open Loop Control 

Again as defined by Adams, the classical definition of open-loop control is as follows:  

 “An open loop system has no feedback or mechanisms for error regulation. The input events 

for a system exert their influence, the system effects its transformation on the input and the system 

https://en.wikipedia.org/wiki/Feedback_control
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has an output...... A traffic light with fixed timing snarls traffic when the load is heavy and impedes 

the flow when the traffic is light. The system has no compensatory capability.”(Adams, 1971) 

Some movements, however, occur too quickly to integrate sensory information, and instead 

must rely on feed forward control. Open loop control is a feed forward form of motor control, and is 

used to control rapid, ballistic movements that end before any sensory information can be processed. 

To best study this type of control, most research focuses on deafferentation studies, often involving 

cats or monkeys whose sensory nerves have been disconnected from their spinal cords. Monkeys 

who lost all sensory information from their arms resumed normal behavior after recovering from the 

deafferentation procedure. Most skills were relearned, but fine motor control became very difficult 

(Taub, Ellman and Berman, 1966). 

3.2.2 Coordination 
A core motor control issue is coordinating the various components of the motor system to 

act in unison to produce movement. The motor system is highly complex, composed of many 

interacting parts at many different organizational levels. Peripheral neurons receive input from the 

central nervous system and innervate the muscles. In turn, muscles generate forces which actuate 

joints. Getting the pieces to work together is a challenging problem for the motor system and how 

this problem is resolved is an active area of study in motor control research. 

3.2.2a Reflexes 

In some cases the coordination of motor components is hard-wired, consisting of fixed 

neuromuscular pathways that are called reflexes. Reflexes are typically characterized as automatic 

and fixed motor responses, and they occur on a much faster time scale than what is possible for 

reactions that depend on perceptual processing (Dewhurst, 1967). Reflexes play a fundamental role 

in stabilizing the motor system, providing almost immediate compensation for small perturbations 

and maintaining fixed execution patterns. Some reflex loops are routed solely through the spinal cord 

without receiving input from the brain, and thus do not require attention or conscious control. Others 

involve lower brain areas and can be influenced by prior instructions or intentions, but they remain 

independent of perceptual processing and online control. 

The simplest reflex is the monosynaptic reflex or short-loop reflex, such as the monosynaptic 

stretch response. In this example, Ia afferent neurons are activated by muscle spindles when they 

deform due to the stretching of the muscle. In the spinal cord, these afferent neurons synapse directly 

https://en.wikipedia.org/wiki/Feed_forward_(control)
https://en.wikipedia.org/wiki/Motor_system
https://en.wikipedia.org/wiki/Reflex
https://en.wikipedia.org/wiki/Reflex_arc#Monosynaptic_vs._polysynaptic
https://en.wikipedia.org/wiki/Ia_afferent
https://en.wikipedia.org/wiki/Muscle_spindle
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onto alpha motor neurons that regulate the contraction of the same muscle (Tobergte and Curtis, 

2013).  Thus, any stretching of a muscle automatically signals a reflexive contraction of that muscle, 

without any central control. As the name and the description implies, monosynaptic reflexes depend 

on a single synaptic connection between an afferent sensory neuron and efferent motor neuron. In 

general the actions of monosynaptic reflexes are fixed and cannot be controlled or influenced by 

intention or instruction. However, there is some evidence to suggest that the gain or magnitude of 

these reflexes can be adjusted by context and experience (Matthews, 1986). 

Polysynaptic reflexes or long-loop reflexes are reflex arcs which involve more than a single 

synaptic connection in the spinal cord. These loops may include cortical regions of the brain as well, 

and are thus slower than their monosynaptic counterparts due to the greater travel time. However, 

actions controlled by polysynaptic reflex loops are still faster than actions which require perceptual 

processing (Kandel, 2012). While the actions of short-loop reflexes are fixed, polysynaptic reflexes 

can often be regulated by instruction or prior experience (Evarts, 1973). 

3.2.2b Synergies 

A motor synergy is a neural organization of a multi-element system that (1) organizes sharing 

of a task among a set of elemental variables; and (2) ensures co-variation among elemental variables 

with the purpose to stabilize performance variables (Latash and Anson, 2006; Alnajjar et al., 

2013). The components of a synergy need not be physically connected, but instead are connected by 

their response to perceptual information about the particular motor task being executed. Synergies 

are learned, rather than being hardwired like reflexes, and are organized in a task-dependent 

manner; a synergy is structured for a particular action and not determined generally for the 

components themselves.  A notable early example comes from the work of Nikolai Bernstein, in which 

he demonstrated synergies at work in the hammering actions of professional blacksmiths. The 

muscles of the arm controlling the movement of the hammer are informationally linked in such a way 

that errors and variability in one muscle are automatically compensated for by the actions of the 

other muscles. These compensatory actions are reflex-like in that they occur faster than perceptual 

processing would seem to allow, yet they are only present in expert performance, not in novices. In 

the case of blacksmiths, the synergy in question is organized specifically for hammering actions and 

is not a general purpose organization of the muscles of the arm. Synergies have two defining 

characteristics in addition to being task dependent; sharing and flexibility/stability (Latash, 2008). 

https://en.wikipedia.org/wiki/Alpha_motor_neurons
https://en.wikipedia.org/wiki/Gain_(electronics)
https://en.wikipedia.org/wiki/Motor_coordination#Muscle_synergies
https://en.wikipedia.org/wiki/Nikolai_Bernstein
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"Sharing" requires that the execution of a particular motor task depends on the combined 

actions of all the components that make up the synergy. Often, there are more components involved 

than are strictly needed for the particular task (see "Redundancy" below), but the control of that 

motor task is distributed across all components nonetheless. A simple demonstration comes from a 

two-finger force production task, where participants are required to generate a fixed amount of force 

by pushing down on two force plates with two different fingers (Scholz et al., 2002).  In this task, 

participants generated a particular force output by combining the contributions of independent 

fingers. While the force produced by any single finger can vary, this variation is constrained by the 

action of the other such that the desired force is always generated. 

Co-variation also provides "flexibility and stability" to motor tasks. Considering again the force 

production task, if one finger did not produce enough force, it could be compensated for by the other 

(Scholz et al., 2002; Latash, Scholz and Schöner, 2007).  The components of a motor synergy are 

expected to change their action to compensate for the errors and variability in other components 

that could affect the outcome of the motor task. This provides flexibility because it allows for multiple 

motor solutions to particular tasks, and it provides motor stability by preventing errors in individual 

motor components from affecting the task itself. 

Synergies simplify the computational difficulty of motor control. Coordinating the 

numerous degrees of freedom in the body is a challenging problem, both because of the tremendous 

complexity of the motor system, as well as the different levels at which this organization can occur 

(neural, muscular, kinematic, spatial, etc.). Because the components of a synergy are functionally 

coupled for a specific task, execution of motor tasks can be accomplished by activating the relevant 

synergy with a single neural signal (Bernstein, 1967).  The need to control all of the relevant 

components independently is removed because organization emerges automatically as a 

consequence of the systematic covariation of components. Similar to how reflexes are physically 

connected and thus do not require control of individual components by the central nervous system, 

actions can be executed through synergies with minimal executive control because they are 

functionally connected. Beside motor synergies, the term of sensory synergies has recently been 

introduced (Alnajjar et al., 2015). Sensory synergy are believed to play an important role in integrating 

the mixture of environmental inputs to provide low-dimensional information to the CNS thus guiding 

the recruitment of motor synergies. 

https://en.wikipedia.org/wiki/Degrees_of_freedom_(mechanics)
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3.2.2c Motor Programs 

While synergies represent coordination derived from peripheral interactions of motor 

components, motor programs are specific, pre-structured motor activation patterns that are 

generated and executed by a central controller (in the case of a biological organism, the brain) 

(Schmidt, 1975). They represent at top-down approach to motor coordination, rather than the 

bottom-up approach offered by synergies. Motor programs are thought to be executed in an open-

loop manner, although sensory information is most likely used to sense the current state of the 

organism and determine the appropriate goals. However, once the program has been executed, it 

cannot be altered online by additional sensory information. 

Evidence for the existence of motor programs comes from studies of rapid movement 

execution and the difficulty associated with changing those movements once they have been 

initiated. For example, people who are asked to make fast arm swings have extreme difficulty in 

halting that movement when provided with a "STOP" signal after the movement has been initiated 

(Henry and Harrison, 1961).  Interestingly, this reversal difficulty persists even if the stop signal is 

presented after the initial "GO" signal but before the movement actually begins. This research 

suggests that once selection and execution of a motor program begins, it must run to completion 

before another action can be taken. This effect has been found even when the movement that is 

being executed by a particular motor program is prevented from occurring at all. People who attempt 

to execute particular movements (such as pushing with the arm), but unknowingly have the action of 

their body arrested before any movement can actually take place, show the same muscle activation 

patterns (including stabilizing and support activation that does not actually generate the movement) 

as when they are allowed to complete their intended action (Wadman et al., 1979). 

Although the evidence for motor programs seems persuasive, there have been several 

important criticisms of the theory. The first is the problem of storage. If each movement an organism 

could generate requires its own motor program, it would seem necessary for that organism to possess 

an unlimited repository of such programs and where these would be kept is not clear. Aside from the 

enormous memory requirements such a facility would take, no motor program storage area in the 

brain has yet been identified. The second problem is concerned with novelty in movement. If a 

specific motor program is required for any particular movement, it is not clear how one would ever 

produce a novel movement. At best, an individual would have to practice any new movement before 

https://en.wikipedia.org/wiki/Motor_program
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executing it with any success, and at worst, would be incapable of new movements because no motor 

program would exist for new movements. These difficulties have led to a more nuanced notion of 

motor programs known as generalized motor programs (Schmidt, 1988).  A generalized motor 

program is a program for a particular class of action, rather than a specific movement. This program 

is parameterized by the context of the environment and the current state of the organism. 

3.2.2d Redundancy 

An important issue for coordinating the motor system is the problem of the redundancy of 

motor degrees of freedom. As detailed in the "Synergies" section, many actions and movements can 

be executed in multiple ways because functional synergies controlling those actions are able to co-

vary without changing the outcome of the action. This is possible because there are more motor 

components involved in the production of actions than are generally required by the physical 

constraints on that action. For example, the human arm has seven joints which determine the 

position of the hand in the world. However, only three spatial dimensions are needed to specify any 

location the hand could be placed in. This excess of kinematic degrees of freedom means that there 

are multiple arm configurations that correspond to any particular location of the hand. 

Some of the earliest and most influential work on the study of motor redundancy came from 

the Russian physiologist Nikolai Bernstein. Bernstein's research was primarily concerned with 

understanding how coordination was developed for skilled actions. He observed that the redundancy 

of the motor system made it possible to execute actions and movements in a multitude of different 

ways while achieving equivalent outcomes (Bernstein, 1967).  This equivalency in motor action means 

that there is no one-to-one correspondence between the desired movements and the coordination 

of the motor system needed to execute those movements. Any desired movement or action does not 

have a particular coordination of neurons, muscles, and kinematics that make it possible. This motor 

equivalency problem became known as the degrees of freedom problem because it is a product of 

having redundant degrees of freedom available in the motor system. 

3.3 Perception in Motor Control 
Related, yet distinct from the issue of how the processing of sensory information affects the 

control of movements and actions is the question of how the perception of the world structures 

action. Perception is extremely important in motor control because it carries the relevant 

information about objects, environments and bodies which is used in organizing and executing 

https://en.wikipedia.org/wiki/Motor_control#Synergies
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actions and movements. What is perceived and how the subsequent information is used to organize 

the motor system is a current and ongoing area of research.  This is especially important to BCI 

systems in which, often, the only form of feedback is visual information. 

3.2.1 Model Based Control Strategies 
Most model based strategies of motor control rely on perceptual information, but assume 

that this information is not always useful, veridical or constant. Optical information is interrupted by 

eye blinks, motion is obstructed by objects in the environment, and distortions can change the 

appearance of object shape. Model based and representational control strategies are those that rely 

on accurate internal models of the environment, constructed from a combination of perceptual 

information and prior knowledge, as the primary source information for planning and executing 

actions, even in the absence of perceptual information (Kawato, 1999).  

3.2.1a Inference and Indirect Perception 

Many models of the perceptual system assume indirect perception, or the notion that the 

world that gets perceived is not identical to the actual environment. Environmental information must 

go through several stages before being perceived, and the transitions between these stages introduce 

ambiguity. What actually gets perceived is the mind's best guess about what is occurring in the 

environment based on previous experience. Support for this idea comes from the Ames room illusion, 

where a distorted room causes the viewer to see objects known to be a constant size as growing or 

shrinking as they move around the room. The room itself is seen as being square, or at least consisting 

of right angles, as all previous rooms the perceiver has encountered have had those properties. 

Another example of this ambiguity comes from the doctrine of specific nerve energies. The doctrine 

presents the finding that there are distinct nerve types for different types of sensory input, and these 

nerves respond in a characteristic way regardless of the method of stimulation. That is to say, the 

color red causes optical nerves to fire in a specific pattern that is processed by the brain as 

experiencing the color red. (To be exactly accurate, the color red does not actual cause optical nerves 

to fire; rather the specific wavelength of light activates photoreceptors in the eye. “Red” is a property 

of the brain to which humans have given context and meaning).  However, if that same nerve is 

electrically stimulated in an identical pattern, the brain could perceive the color red when no 

corresponding stimuli is present. 

https://en.wikipedia.org/wiki/Internal_models
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3.2.1b Forward Models 

Forward models are a predictive internal model of motor control that takes the available 

perceptual information, combined with a particular motor program, and tries to predict the outcome 

of the planned motor movement. Forward models structure action by determining how the forces, 

velocities, and positions of motor components affect changes in the environment and in the 

individual. It is proposed that forward models help with the neural control of limb stiffness when 

individuals interact with their environment. Forward models are thought to use motor programs as 

input to predict the outcome of an action. An error signal is generated when the predictions made by 

a forward model do not match the actual outcome of the movement, prompting an update of an 

existing model and providing a mechanism for learning. These models explain why it is impossible to 

tickle yourself. A sensation is experienced as ticklish when it is unpredictable. However, forward 

models predict the outcome of your motor movements, meaning the motion is predictable, and 

therefore not ticklish (Blakemore, Wolpert and Frith, 2000). 

Evidence for forward models comes from studies of motor adaptation. When a person's goal-

directed reaching movements are perturbed by a force field, they gradually, but steadily, adapt the 

movement of their arm to allow them to again reach their goal. However, they do so in such a way 

that preserves some high level movement characteristics; bell-shaped velocity profiles, straight line 

translation of the hand, and smooth, continuous movements (Shadmehr and Mussa-Ivaldi, 

1994).  These movement features are recovered, despite the fact that they require startlingly 

different arm dynamics (i.e., torques and forces). This recovery provides evidence that what is 

motivating movement is a particular motor plan, and the individual is using a forward model to 

predict how arm dynamics change the movement of the arm to achieve particular task level 

characteristics. Differences between the expected arm movement and the observed arm movement 

produces an error signal which is used as the basis for learning. Additional evidence for forward 

models comes from experiments which require subjects to determine the location of an effector 

following an unseen movement (Wolpert, Ghahramani and Jordan, 1995). 

3.2.1c Inverse Models 

Inverse models predict the necessary movements of motor components to achieve a desired 

perceptual outcome. They can also take the outcome of a motion and attempt to determine the 

sequence of motor commands that resulted in that state. These types of models are particularly 

https://en.wikipedia.org/wiki/Internal_model_(motor_control)#Forward_models
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useful for open loop control, and allow for specific types of movements, such as fixating on a 

stationary object while the head is moving. Complimentary to forward models, inverse models 

attempt to estimate how to achieve a particular perceptual outcome in order to generate the 

appropriate motor plan. Because inverse models and forward model are so closely associated, studies 

of internal models are often used as evidence for the roles of both model types in action. 

Motor adaptation studies, therefore, also make a case for inverse models. Motor movements 

seem to follow predefined "plans" that preserve certain invariant features of the movement. In the 

reaching task mentioned above, the persistence of bell-shaped velocity profiles and smooth, straight 

hand trajectories provides evidence for the existence of such plans (Shadmehr and Mussa-Ivaldi, 

1994).  Movements that achieve these desired task-level outcomes are estimated by an inverse 

model. Adaptation therefore proceeds as a process of estimating the necessary movements with an 

inverse model, simulating with a forward model the outcome of those movement plans, observing 

the difference between the desired outcome and the actual outcome, and updating the models for a 

future attempt. 

3.2.2 Information Based Control 
An alternative to model based control is information based control. Informational control 

strategies organize movements and actions based on perceptual information about the environment, 

rather than on cognitive models or representations of the world. The actions of the motor system are 

organized by information about the environment and information about the current state of the 

agent (Warren, 2006).  Information based control strategies often treat the environment and the 

organism as a single system, with action proceeding as a natural consequence of the interactions of 

this system. A core assumption of information based control strategies is that perceptions of the 

environment are rich in information and veridical for the purposes of producing actions. This runs 

counter to the assumptions of indirect perception made by model based control strategies. 

3.2.2a Direct Perception 

Direct perception in the cognitive sense is related to the philosophical notion of naïve or 

direct realism in that it is predicated on the assumption that what we perceive is what is actually in 

the world. James J. Gibson is credited with recasting direct perception as ecological perception 

(Gibson, 1979).  While the problem of indirect perception proposes that physical information about 

object in our environment is not available due to the ambiguity of sensory information, proponents 
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of direct perception (like Gibson) suggest that the relevant information encoded in sensory signals is 

not the physical properties of objects, but rather the action opportunities the environment affords. 

These affordances are directly perceivable without ambiguity, and thus preclude the need for 

internal models or representations of the world. Affordances exist only as a byproduct of the 

interactions between an agent and its environment, and thus perception is an "ecological" endeavor, 

depending on the whole agent/environment system rather than on the agent in isolation. 

Because affordances are action possibilities, perception is directly connected to the 

production of actions and movements. The role of perception is to provide information that specifies 

how actions should be organized and controlled (Michaels and Carello, 1981); the motor system is 

"tuned" to respond to specific type of information in particular ways. Through this relationship, 

control of the motor system and the execution of actions are dictated by the information of the 

environment. As an example, a doorway "affords" passing through, but a wall does not. How a one 

might pass through a doorway is specified by the visual information received from the environment, 

as well as the information perceived about one's own body. Together, this information determines 

the pass-ability of a doorway, but not a wall. In addition, the act of moving towards and passing 

through the doorway generates more information and this in turn specifies further action. The 

conclusion of direct perception is that actions and perceptions are critically linked and one cannot be 

fully understood without the other. 

3.2.2b Behavioral Dynamics 

Building on the assumptions of direct perception behavioral dynamics is a behavioral control 

theory that treats perceptual organisms as dynamic systems that respond to informational variables 

with actions, in a functional manner (Warren, 2006).  Under this understanding of behavior, actions 

unfold as the natural consequence of the interaction between the organisms and the available 

information about the environment, which specified in body-relevant variables. Much of the research 

in behavioral dynamics has focused on locomotion, where visually specified information (such as 

optic flow, time-to-contact, optical expansion, etc.) is used to determine how to navigate the 

environment (Fajen and Warren, 2003; Fajen and Matthis, 2011).  Interaction forces between the 

human and the environment also affect behavioral dynamics as seen in by the neural control of limb 

stiffness. 
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3.4 Bayesian Theory & Motor Control 
A more modern perspective on motor control pushes past traditional sensor/controller based 

issues and applies Bayesian approaches to brain function to investigate the capacity of the nervous 

system to operate in situations of uncertainty in a fashion that is close to the optimal prescribed 

by Bayesian statistics (Clark, 2013; Sanders, 2016).  Studies associated with this term often strive to 

explain the brain's cognitive abilities based on statistical principles. It is frequently assumed that the 

nervous system maintains internal probabilistic models that are updated by neural processing of 

sensory information using methods approximating those of Bayesian probability (Knill and Pouget, 

2004; Doya et al., 2007). 

3.4.1 Psychophysics 
A wide range of studies interpret the results of psychophysical experiments in light of 

Bayesian perceptual models. Many aspects of human perceptual and motor behavior can be modeled 

with Bayesian statistics. This approach, with its emphasis on behavioral outcomes as the ultimate 

expressions of neural information processing, is also known for modeling sensory and motor 

decisions using Bayesian decision theory. Examples are the work of Landy (2006, 2008),  Jacobs (1999, 

2003) Jordan, Knill (2005, 2007), Kording and Wolpert (2004), and Goldreich (1975, 2007, 2013).  

3.4.2 Neural Coding 
Many theoretical studies ask how the nervous system could implement Bayesian algorithms. 

Examples are the work of Pouget, Zemel, Deneve, Latham, Hinton and Dayan. Of particular note, 

George and Hawkins published a paper that establishes a model of cortical information processing 

called hierarchical temporal memory that is based on Bayesian network of Markov chains. They 

further map this mathematical model to the existing knowledge about the architecture of cortex and 

show how neurons could recognize patterns by hierarchical Bayesian inference (George and Hawkins, 

2009).  

3.4.3 Predictive Coding 
Rao and colleagues have also shown predictive coding as a neurobiologically plausible scheme 

for inferring the causes of sensory input based on minimizing prediction error (Rao and Ballard, 

1999).  These schemes are related formally to Kalman filtering and other Bayesian update schemes 

(Mulliken, Musallam and Andersen, 2008; Blakely, 2013). In the predictive coding framework, each 

level of a hierarchy employs a generative model to predict representations in the level below. This 
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generative model uses backward connections to convey the prediction to the lower level where it is 

compared to the representation in this subordinate level to produce a prediction error. This 

prediction error is then sent back to the higher level, via forward connections, to adjust the neuronal 

representation of sensory causes, which in turn change the prediction. This self-organizing, reciprocal 

exchange of signals continues until prediction error is minimized and the most likely cause of the 

input has been generated. It can be shown that this scheme is formally equivalent to empirical 

Bayesian inference, in which prior expectations emerge naturally from the hierarchal models 

employed (Friston 2002, 2003, 2005). It should be noted that the prediction addressed in predictive 

coding is predicting the sensory effects from their cause. In other words it is about the mapping 

between the cause (motor commands to grasp) and the sensory (i.e., visual or proprioceptive) 

expression or effect of that cause.  It is not about forecasting (i.e., predicting the sensory states in the 

future, given the sensory state now), otherwise known as prospective coding (Schultz-Bosbach and 

Wolfgang Prinz 2007). 

3.4.4 Free Energy & Active Inference 
During the 1990s some researchers such as Geoffrey Hinton and Karl Friston began examining 

the concept of free energy as a calculably tractable measure of the discrepancy between actual 

features of the world and representations of those features captured by neural network models 

(Tschudi, 2010). A synthesis has been attempted recently by Karl Friston, in which the Bayesian brain 

emerges from a general principle of free energy minimization (Friston, 2010). In this framework, both 

action and perception are seen as a consequence of suppressing free-energy, leading to perceptual 

(Friston, 2005) and active inference (Young et al., 2016) and a more embodied (enactive) view of the 

Bayesian brain. Using variational Bayesian methods, it can be shown how internal models of the 

world are updated by sensory information to minimize free energy or the discrepancy between 

sensory input and predictions of that input. This can also be cast (in neurobiologically plausible terms) 

as and expansion on predictive coding or, more generally, Bayesian filtering and applied to motor 

control as seen in Figure 3.   
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Figure 3 - Active Inference & Motor Control. This figure represents the final simplification of the predictive coding 
scheme as described in Friston, 2011.  Going beyond traditional optimal control models of human motor control, 
Friston proposes a framework in which the cost functions have been replaced by prior beliefs about (desired) 
trajectories in an extrinsic frame of reference.  These beliefs enter the Bayesian filter to guide predictions of sensory 
inputs.  Proprioceptive predictions are fulfilled in the periphery through classical motor reflex arcs, while predictions 
of exteroceptive inputs correspond to corollary discharge and are an integral part of perceptual inference.  Note that 
optimal control now reduces to simply suppressing proprioceptive prediction errors, i.e., active inference. 

These considerations, while not the primary focus of this work, are important when assessing 

the role BCIs play in restoring or testing various aspects of motor control.  In addition, the existing 

models in the field can help us understand situations in which BCI control does not line up with 

standard motor control expectations.  While abstracted control of virtual objects (i.e., a cursor or 

robotic hand) may be considered to be similar to general hand or limb effector control, the actual 

dynamics may greatly vary as many of the structural components (e.g. efference copy mechanism as 

seen in Figure 3) simply do not exist intrinsically and may be emergent features that arise with 

experience or learning (i.e., a Bayesian developmental process).  An important example for bimanual 

coordination is discussed further in Chapter 3. 
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Chapter 4: Effecting Control II – Motor Dissociation with BCI 
 

During closed-loop control of a brain–computer interface, neurons in the primary motor 

cortex can be intensely active even though the subject may be making no detectable movement or 

muscle contraction. How can neural activity in the primary motor cortex become dissociated from 

the movements and muscles of the native limb that it normally controls? 

Here we examine circumstances in which motor cortex activity is known to dissociate from 

movement – including mental imagery, visuo-motor dissociation and instructed delay. Many such 

motor cortex neurons may be related to muscle activity only indirectly. Furthermore, the integration 

of thousands of synaptic inputs by individual α-motoneurons means that under certain circumstances 

even cortico-motoneuronal cells, which make monosynaptic connections to α-motoneurons, can 

become dissociated from muscle activity. The natural ability of motor cortex neurons under 

voluntarily control to become dissociated from bodily movement may underlie the utility of this 

cortical area for controlling brain–computer interfaces. 

The past decades have witnessed rapid technological advances in brain–computer interfaces 

(BCIs), devices in which activity recorded from the neuromuscular system of a waking subject is 

processed by a computer, and the computational output then used to accomplish a task and/or drive 

a physical machine (Donoghue et al. 2004, 2007a; Schwartz, 2004; Fagg et al. 2007; Nicolelis & 

Lebedev, 2009). For input, many of these BCIs have used neural signals – single- and multi-unit spikes, 

local field potentials and electrocorticographic potentials – recorded from the primary motor cortex 

(M1). Under voluntary control, this area of the cerebral cortex normally provides the most direct 

cortical output to the spinal cord and to the α-motoneurons there that drive muscles to move the 

subject’s native limbs. In many of these studies, the experimental subjects have been monkeys, 

particularly macaques, both because these animals can be trained to perform complex behaviors, 

and because their nervous system and muscles are comparatively close to those of humans. 

A common daily paradigm for BCI studies goes as follows. At first, the subject performs a 

behavioral task that requires a variety of movements of the native limb, a ‘hand-control’ mode. For 

example, the subject may hold a joystick while reaching to a variety of different target locations. The 

subject typically does not watch its hand directly, but rather this motion is displayed to the subject 
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as a cursor moving on a computer screen, just as the motion of a computer mouse is displayed on a 

screen to someone using a personal computer. As the subject performs these movements, neural 

data are recorded from M1. These neural data are then decoded to extract detailed information 

about motion of the hand (here equivalent to motion of the cursor) in time. Impressively accurate 

descriptions of the motion can be decoded from the collective neural activity. 

The mathematical algorithms used to decode movements from neural activity then are used to 

provide a prediction of the movement that would occur given any particular pattern of neural activity. 

Thereafter, the output predicted by the decoding algorithm is used to control the motion of the 

cursor, substituting for the actual motion of the hand holding the joystick (or computer mouse). Now 

in this second ‘brain control’ mode, the decoded output of the subject’s recorded neural activity 

drives the motion of the cursor, not the native limb or joystick. Using brain control, the subject again 

moves the cursor to various indicated target locations on the screen. 

One of the most striking observations to come from such studies is the dissociation of neural 

activity in M1 from movement of the subject’s native limb. During hand control, the firing rate of 

many M1 neurons varies systematically in relation to the direction of the native limb’s movement, 

and this direction-dependent variation can be used to define a preferred direction for each neuron 

(Georgopoulos et al. 1982, 1986). The preferred directions of M1 neurons typically span the entire 

range of movements studied, and a population vector can be computed from their concurrent firing 

rates that predicts the direction and speed (velocity) of hand motion in space (Moran & Schwartz, 

1999a, b; Schwartz & Moran, 1999). During brain control, however, the directional tuning of many 

M1 neurons changes substantially, with the preferred directions of various neurons changing in 

different directions (Taylor et al. 2002; Ganguly & Carmena, 2009). Furthermore, although the 

monkey initially may continue to move its native limb during brain control, movements of the native 

limb often diminish and may cease entirely. Recording electromyographic (EMG) activity may show 

that the muscles which normally move the limb are completely silent (Carmena et al. 2003). M1 

neurons then continue to discharge, driving motion of the cursor through the decoding algorithm, in 

the absence of limb movement or any contraction of limb muscles. How can the activity of M1 

neurons that are so intimately involved in controlling movement of the subject’s native limb be so 

readily dissociated from limb movement?  Below we explore this paradox by examining instances in 

which the M1 activity that otherwise might be thought obligatorily related to the production of native 
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limb movement becomes dissociated from the movement per se.  As we proceed, it may be helpful 

to keep in mind two fundamental facts.  First, although commonly thought of as ‘upper motor 

neurons’ (Phillips & Landau, 1990), different neurons in M1 have various input and output 

connectivity. M1 neurons in cortical layers II and III exchange information with other cortical areas, 

largely the premotor, supplementary motor, cingulate motor and somatosensory cortical areas. 

Different neurons in corticofugal output layer V project to the basal ganglia, red nucleus, cerebellum 

(via pontine nuclei), pontomedullary reticular formation, and/or to the spinal cord. Of those that do 

project to the spinal cord, only a fraction (∼55%) have detectable synaptic effects directly onα-

motoneurons (Lemon et al. 1986). Hence it should come as no surprise that many M1 neurons can 

be active in dissociation from movement of the native limb (Fetz & Cheney, 1987). 

Second, even those M1 neurons that do make monosynaptic connections to spinal α-

motoneurons do not control those motoneurons to the extent implied by the term ‘upper motor 

neurons’. The axon of each spinal α-motoneuron branches within its target muscle making such a 

strong synaptic contact (end-plate) on each muscle fiber it innervates that discharge of the α-

motoneuron always is followed by contraction of all of its muscle fibers. Whereas each muscle fiber 

receives input from only one α-motoneuron, each α-motoneuron receives thousands of synaptic 

inputs from a wide variety of neurons – including I-a afferents, inhibitory and excitatory spinal 

interneurons, propriospinal neurons, vestibulospinal neurons, reticulospinal neurons (Baker, 2011), 

rubrospinal neurons and corticospinal neurons. None of these input neurons makes such a strong 

synaptic connection on an α-motoneuron as to be able to drive it consistently. Because each α-

motoneuron integrates thousands of synaptic inputs from a wide variety of sources, no CNS neurons 

other than α-motoneurons have a direct, obligatory coupling to muscle fibers, and hence to 

movement. Even the cortico-motoneuronal (CM) cells of the primary motor cortex, which are 

commonly viewed as directly driving spinal α-motoneurons, can have a variable relationship to the 

activity of the muscles they ‘control’. 

4.1 Motor Imagery and Mirror Neurons 

Humans often imagine themselves performing a particular action or sequence of actions, a 

process termed motor imagery. A dancer, for example, might imagine him or herself making the 

movements required for a particular dance.  By repeatedly imagining a particular motor performance, 

termed mental rehearsal, human subjects like the dancer can improve their eventual performance of 
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the actual movements (Avanzino et al. 2009; Munzert et al. 2009).  Several fMRI studies have shown 

that during motor imagery and mental rehearsal the normal human M1 is activated in a location 

similar to that activated during actual movement, though the activation is less intense (Munzert et 

al. 2009). Similarly, when human amputees imagine moving their missing limb, fMRI activation 

appears in the somatotopically appropriate region of M1.  Hence motor imagery and mental rehearsal 

provide a circumstance in which the human M1 is activated as part of a normal process, but in the 

absence of actual movement. Even observing someone else perform a movement may provoke some 

degree of motor imagery in the observer. When you watch a dancer dance, for example, to some 

extent you may imagine yourself performing the dance.  Rizzolatti and colleagues originally described 

neurons in the ventral premotor cortex (PMv) of monkeys that discharge not only when the monkey 

makes a specific grasp with its hand, but also when the monkey watches another primate – monkey 

or human – use the same type of grasp (di Pellegrino et al. 1992; Gallese et al. 1996; Rizzolatti & 

Craighero, 2004). The investigators termed these ‘mirror’ neurons. Had the discharge of these 

neurons not been recorded while the subject watched another primate making the same grasp, these 

mirror neurons would instead have been considered as closely linked to the monkey’s own 

movement as other grasp-related neurons in PMv.  Lemon and colleagues (Bennett and Lemon, 1994; 

Vigneswaran et al., 2013; Eisen et al., 2015) also note two additional important points. First, during 

grasp observation, mirror neurons are active with no detectable EMG activity in the subject’s muscles.  

Hence the subject is not mirroring the observed grasp per se, despite the activity of these cortical 

neurons. And second, some PMv mirror neurons have pyramidal tract axons, indicating that during 

grasp observation such mirror neurons are transmitting information to the spinal cord, even though 

there is no muscle activation (Kraskov et al. 2009). Although most studies of mirror neurons have 

focused on PMv, preliminary observations from Lemon’s group suggest that there also may be mirror 

neurons in M1, and that some of these M1 mirror neurons also have axons in the pyramidal tract. 

Again, if discharge during grasp observation had not been examined, these M1 mirror neurons would 

appear to discharge during specific grasps performed by the monkey, like any other M1 neuron. 

Although the role of mirror neuron discharge during grasp observation is not yet fully understood, 

we might speculate that while observing the movement of another primate, the monkey is imagining 

itself performing the same movement. 
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4.2 Visuomotor Dissociation 
When you reach out to pick up your coffee cup, the place to which you reach is identical to 

your visual perception of the coffee cup’s location. But the location to which a movement is made 

also can be dissociated from the location of the visual cue. When using a computer mouse, for 

example, pushing your hand horizontally away from you moves the cursor, not horizontally away, but 

vertically up on the screen. Three studies in which the locations of visual targets were dissociated 

from the required voluntary motion of the limb have revealed that many M1 neurons represent the 

visually perceived location of the target in external space rather than the motion of the limb per se. 

In a seminal study, dissociation of the visual cue location from limb movement was produced by 

training monkeys to perform a mental rotation (Georgopoulos et al. 1989).  In this case, the monkeys 

made reaching movements from a central home position to one of eight targets arranged at 45 

degree intervals on a peripheral circle. The monkeys were trained, however, to move their hand to 

the target location 90 degree counter-clockwise from the target cued visually. Under these 

circumstances, the initial, short-latency responses in M1 encoded the direction to the visual cue, 

albeit at low amplitude. Through the remainder of the monkey’s reaction time, the overall activity of 

M1 neurons increased, and the direction encoded by the active population of M1 neurons gradually 

rotated to point in the direction of actual limb movement just before the onset of that movement. 

Though ultimately indicating the direction of actual movement, the initial response of the M1 

population had indicated the location of the visual cue.  

In a second visuomotor dissociation study, monkeys made flexion–extension elbow 

movements with the right arm held out to the side, such that elbow extension moved the hand to 

the right and elbow flexion moved the hand to the left (Alexander & Crutcher, 1990a). The angular 

position of the elbow controlled the right/left motion of a cursor viewed by the monkey on a 

computer screen. In different blocks of trials, the coupling between the motion of the elbow and the 

cursor could be either direct (elbow extension that moved the hand to the right also moved the cursor 

to the right) or inverted (elbow extension that moved the hand to the right instead moved the cursor 

to the left), dissociating the direction of cursor movement from the direction of elbow movement. In 

individual trials the monkey positioned the cursor in a central starting position, a target appeared on 

the left or right, and after an instructed delay the monkey was required to move the cursor to the 

target. Under these conditions, 15% of M1 neurons discharged in relation to the direction of actual 



www.manaraa.com

38 

 

elbow movement during the preparatory instructed delay period and 71% during the movement 

itself. But 40% of M1 neurons during the preparatory period and 14% during the movement remained 

coupled to direction of cursor motion on the screen rather than the movement of the elbow. 

In a third study, monkeys used wrist movements to control a cursor, moving the cursor from 

a center position to eight peripheral targets, again arranged in a circle at 45 degree intervals. (Kakei 

et al. 1999). Here, different blocks of trials were performed with the forearm in three different 

pronation/supination postures: fully pronated, intermediate, and fully supinated. In different 

forearm postures, moving the hand in a given direction required activation of different combinations 

of wrist muscles. For example, with the forearm fully pronated, moving the hand toward the upward 

target involved contraction of wrist extensor muscles extending the wrist, but with the forearm fully 

supinated, wrist flexor muscles contracted to flex the wrist and thereby move the hand toward the 

upward target. With the forearm in the intermediate position, the radial wrist flexor and extensor 

muscles co-contracted to lift the hand upward. In this paradigm, which used different forearm 

postures to dissociate the direction of both motion at the wrist and contraction of wrist muscles from 

the target direction, only 28 of 88 M1 neurons (32%) showed discharge patterns most closely 

associated with patterns of muscle contraction. In contrast, 44 of the 88 M1 neurons (50%) 

discharged in relation to the location of the target, whichever wrist muscles and wrist motion were 

used to move the hand toward the target. In all three of these studies, had the activity of M1 neurons 

not been examined under conditions that dissociated visual target location from limb movement 

direction, all these M1 neurons would have been considered directly related to the limb movement 

per se. Yet when observed under the right conditions, these M1 neurons became substantively 

dissociated from motion of the limb per se. 

4.3 Temporal Dissociation during Instructed Delays 
We often think about movements and prepare to make them well before we actually perform 

them.  Upon hearing, ‘On your mark, get set. . .’, for example, sprinters prepare themselves to ‘Go!’ 

During the time interval between receiving a specific instruction and the subsequent Go signal, the 

brain can plan the movement to make, but must withhold actually starting the movement. We now 

know that during such an instructed delay period neural activity related to the specific upcoming 

movement appears in a wide variety of cortical and subcortical structures (Prut & Fetz, 1999; Buford 

& Davidson, 2004), including a substantial proportion of M1 neurons (Tanji & Evarts, 1976; Thach, 
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1978; Alexander & Crutcher, 1990b). During instructed delays, neurons in M1 (including CM cells; 

Fetz & Cheney, 1987) and elsewhere thus may be active for hundreds of milliseconds in the absence 

of EMG activity or limb movement. 

4.4 Dissociating Cortico-motoneuronal Cells from Their Target Muscles 
The cortico-motoneuronal (CM) cells that send their axons from M1 down the corticospinal 

tract to synapse directly on spinal α-motoneurons constitute the most important descending pathway 

for control of fine movements. The presence of such CM cells in certain monkey species has been 

demonstrated using a variety of techniques. Intracellular recordings from monkey α-motoneurons 

have demonstrated monosynaptic EPSPs following electrical stimulation of M1 (Clough et al. 1968; 

Porter & Hore, 1969). Corticospinal axons filled with tracer have been shown to have synaptic 

boutons on α-motoneuron dendrites (Lawrence et al. 1985). And injection of rabies virus into muscles 

to produce retrograde trans-neuronal labelling has shown first-order labelling in α-motoneurons and 

second-order labelling in M1 layer V neurons (Rathelot & Strick, 2006, 2009). These CM cells provide 

the most direct pathway through which the cerebral cortex influences movement of the 

body (Kandel, 2012). 

Although CM synapses exert powerful excitatory effects on α-motoneurons, the same 

motoneurons also receive many other inputs (Fuglevand, 2011), including those from Ia afferents, 

spinal interneurons, propriospinal neurons, reticulospinal neurons and rubrospinal neurons (Mewes 

& Cheney, 1991; Flament et al. 1992; Porter & Lemon, 1993; Perlmutter et al. 1998; Riddle et al. 

2009). Any individual α-motoneuron receives thousands of synaptic contacts. The handful of synaptic 

contacts from a given CM cell therefore does not consistently drive the discharge of any particular α-

motoneuron. How then can an M1 neuron recorded in an awake, behaving monkey be identified as 

a CM cell? If an M1 neuron could be stimulated intracellularly so as to stimulate only that neuron, 

and if intracellular recordings could be made simultaneously from numerous α-motoneurons so as to 

observe EPSPs, individual CM cells could be identified unambiguously. 

Although pioneering studies have achieved intracellular recording from M1 neurons in awake 

animals (Matsumura et al. 1988, 1996; Chen & Fetz, 2005), the technical difficulty of obtaining such 

intracellular recordings in M1 neurons with concurrent intracellular recording in spinal α- 

motoneurons to date has precluded absolute identification of CM cells in awake behaving animals. 

Peaks in the cross-correlation histogram formed between the spikes of an extracellularly recorded 
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M1 neuron and those of a single intramuscularly recorded motor unit can provide correlational 

evidence that the M1 neuron is a CM cell (Mantel & Lemon, 1987), but maintaining isolation of single 

motor units in behaving animals is difficult as well.  Likewise, although cross-correlation histograms 

between pairs of motor units in human hand muscles have provided information about the 

divergence of supraspinal and potentially corticospinal inputs (Fuglevand, 2011), the activity of CM 

cells remains unrecorded when applying this technique. The technique of spike-triggered averaging 

of EMG activity, while also correlational, therefore has been used to detect monosynaptic input from 

a recorded CM cell onto a pool of α-motoneurons. Because of the numerous other synaptic inputs, 

the individual spikes recorded from a CM cell produce no consistent observable effect in the EMG 

activity of any target muscle. Nevertheless, the arrival of a CM EPSP in the motoneuron pool can elicit 

the next action potential from those few motoneurons that happen to be close to threshold.  If the 

motoneuron pool already is active to some extent, then the spike of a CM cell in the cortex is followed 

at a short, fixed latency by an increased likelihood that some α-motoneurons within that pool will 

discharge. By averaging rectified EMG activity aligned (triggered) at the times of hundreds to 

thousands of spikes from a CM cell, statistically significant increases in the discharge probability of 

motoneurons in a muscle’s pool can be identified, reflecting the influence of the synaptic input from 

the triggering CM cell. The spike-triggered average of rectified EMG activity then shows a peak 

relative to the average EMG baseline, referred to as a post-spike facilitation (PSF) of muscle activity. 

If the onset latency of the peak is consistent with the time needed for conduction from the cortical 

neuron to the motoneuron pool, monosynaptic excitation of α-motoneurons, conduction from the 

motoneuron pool to the muscle fibers, and excitation of the muscle fibers, then the PSF can be taken 

as evidence that the M1 neuron is a CM cell (Fetz & Cheney, 1980; Buys et al. 1986; Lemon et al. 

1986; Smith & Fetz, 2009b). The amplitude of the PSF peak can be quantified relative to the averaged 

EMG baseline as the percentage increase of the maximum value of the peak (peak percentage 

increase, PPI) or the mean amplitude of the peak from its onset to offset (mean percentage increase, 

MPI). Although all corticospinal neurons are thought to be excitatory, not uncommonly troughs are 

found in spike-triggered averages. Such post-spike suppression (PSS) of EMG activity is thought to 

represent the presence of inhibitory interneurons that receive EPSPs from the CM cell and then 

deliver IPSPs to the α-motoneurons. 
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While the PSF produced by a CM cell in a given muscle’s EMG generally has been regarded as 

relatively fixed, a more flexible relationship between the level of activity in the CM cell and the level 

of activity in the target muscle has been observed in a variety of situations (Fetz & Cheney, 1987). CM 

cells are among those M1 neurons that may begin to discharge well before their target muscles 

become active. They may be active during static holds at low force levels when target motor units are 

inactive; and conversely CM cells may be relatively inactive during ballistic, forceful movements when 

their target muscles are vigorously active. During individuated finger movements, a CM cell may be 

coactive with a target muscle during instructed movement of one finger, active without the target 

muscle during instructed movement of another finger, and/or inactive while the target muscle is 

active during yet another finger movement (Schieber & Rivlis, 2007). And recently, monkeys also have 

been operantly conditioned specifically to discharge a CM cell without activating its target muscles, 

and conversely, to contract target muscles without discharging the CM cell (Eaton et al. 2010). The 

post-spike facilitation produced by a CM cell in a given target muscle is not entirely fixed, however. 

Occasional studies have reported anecdotal observations in which the effect produced by a CM cell 

in a given muscle varied in amplitude during different phases of a behavior. In monkeys performing 

a precision pinch task, for example, the PSF observed in triggered averages compiled from spikes 

discharged during the movement phase of the task was larger than the PSF in averages compiled with 

spikes discharge during the static hold (Buys et al. 1986).  

In another series of foundational studies, Fetz and colleagues had shown that monkeys could 

be operantly conditioned to voluntarily control the firing rates of individual M1 neurons (Fetz, 1969), 

to coactivate M1 neurons with particular muscles, and to dissociate the activity of M1 neurons and 

the muscles with which they normally were coactivated (Fetz & Finocchio, 1971, 1972, 1975). 

Schieber and colleagues (Schieber, 2011) built off of this and developed a paradigm in which, after 

first performing a simple hand squeeze task, a monkey was rewarded for discharging a certain 

number of spikes simultaneously (±6 ms) with large motor unit action potentials (MUAPs) 

discriminated from the EMG activity of a given muscle.  Because the monkey could not intentionally 

generate such synchronous spikes in the M1 neuron and MUAPs in the muscle, the monkey achieved 

rewards by finding a motor behavior that coactivated the M1 neuron and the muscle. To do so, the 

monkey typically explored various movements and postures of the arm and hand, and within a few 

minutes performed a motor behavior that produced rewards.  After collecting data while the monkey 
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produced this motor behavior, they could switch to using the EMG from a different muscle, asking 

the monkey to find a motor behavior that coactivated this muscle with the same M1 neuron. They 

termed this behavioral paradigm ‘reinforcement of physiological discharge’ (Schieber, 2011). 

4.5 Considerations for bimanual control. 
Many M1 neurons thus have a natural ability to discharge in dissociation from the limb 

movements to which they normally contribute control. Some M1 neurons are active when no 

movement is being made by the body, either as we watch someone else move, or as we imagine 

ourselves performing movements. The activity of other M1 neurons is coupled more to motion of the 

external target than to that of the native limb per se. As discussed in the previous chapter on motor 

control and the brain, such activity in M1 can be viewed as cognitive (Georgopoulos et al. 1993). Yet 

even the activity of CM cells that do make monosynaptic connections on α-motoneurons does not 

always effectively drive those motoneurons. Referring to any of these M1 neurons as ‘upper motor 

neurons’ is so misleading that the term should no longer be used. In large part, such dissociability 

may underlie the ability of M1 neurons to control a BCI. Upon switching to closed-loop BCI control of 

an output effector, i.e., control in which the subject must use the effector to accomplish a task, the 

brain recognizes that the native limb no longer is being controlled. Because the decoding algorithm 

output driving the effector is not an exact replica of signals driving the native limb, the visually 

observed motion of the BCI effector is not exactly the motion expected by the brain. 

In addition to visual feedback, proprioceptive and tactile feedback from the native limb cues 

the brain that the native limb is no longer controlling the visually observed effector. The brain then 

may organize neural activity to control the BCI effector per se, instead of working to control the native 

limb (Wolpaw, 2010). During such behavior, the CNS may reduce wasted effort by reducing or 

eliminating concurrent muscle contractions that would move the native limb for no purpose.  This 

may also hold for any corresponding ipsilateral representative motor or related signals (Scherer et 

al., 2009; Bundy et al., 2012).  Furthermore, the fact that a substantial fraction of M1 neurons 

normally are active in relation to external targets, more than to native limb movements, may play a 

role in implementation of BCIs for subjects who are unable to make native limb movements due to 

amputation, spinal cord injury or stroke. The discharge of such M1 neurons as the subject watches 

movement of a BCI effector – from a cursor on a screen to a sophisticated mechanical arm – may be 

sufficient to develop a decoding algorithm through which the subject can begin to learn to control 
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the BCI effector voluntarily (Donoghue et al. 2007b; Velliste et al. 2008). The ability of M1 neurons to 

dissociate from movement of the native limb, and even from activation of muscles, also raises the 

possibility that such neurons might be assigned arbitrarily to control a particular degree of freedom 

(Schmidt et al. 1978; Kennedy et al. 2000). For example, monkeys were able to use M1 neurons to 

drive functional electrical stimulation of temporarily dennervated wrist muscles, even when there 

had been no observable relationship to wrist movement prior to the denervation (Moritz et al. 2008). 

Ensembles of neurons then might simply be assigned to control particular degrees of freedom. If the 

subject could learn to control such arbitrary ensembles, different ensembles might be used to control 

desirable degrees of freedom over which a population of decoded neurons has inadequate control. 

Furthermore, a BCI controlling the hand, for example, would not necessarily be constrained by any of 

the lower level biomechanical or neuromuscular properties of the native hand (van Duinen and 

Gandevia, 2011).  But can any M1 neurons be trained to perform any arbitrary function; to what 

extent is the function of which M1 neurons hardwired or developmentally intrinsic versus flexible? 

More importantly, for our purposes, how might these disparate ensembles scale at the local field 

level or beyond and what can that tell us about designing BCIs for our target populations?   

4.6 Takeaways for ECoG-based BCIs 
It is clear that BCIs show great promise for changing how we interact with the world. The field 

of brain-computer interfacing has demonstrated the tremendous adaptive potential of brain and 

machine by showing BCIs can be based on activity from one to millions of neurons (Moran, 2010),  

with response latencies from tens to thousands of milliseconds. However, the performance of these 

devices is not currently sufficient to warrant the risk and expense to their target patient population. 

We posit that the relative single-mindedness of current architectures is one significant obstacle to 

the performance improvements necessary to make these devices clinically viable. We propose the 

utilization of BCI architectures that recognize and leverage the spatially and temporally 

heterogeneous patterns of activity observable across the brain to overcome this obstacle. Though we 

have, as a field, demonstrated the capability of the brain to develop control over these novel 

interfaces, we have done so with little attention to the adaptive processes taking place in neural 

populations that are not directly linked to control of the BCI. An important first step is to develop an 

understanding of which cortical structures are involved in BCI skill acquisition and task execution and 

to characterize the relationships between these regions. From there, specific relationships between 
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neural activity and task demands can be extracted and provided to computational systems as 

additional channels of highly task-relevant information.  

In the studies described in the remainder of this document, we demonstrate two important 

points that advance our understanding of the way brain and machine interact during BCI use. First, 

we demonstrate that execution of neuroprosthetic control in a 2-D bimanual ECoG BCI is 

accompanied by changes in neural activity in a variety of functionally heterogeneous cortical 

structures, and that these distributed regions interact with M1 in meaningful ways that are indicative 

of underlying patterns of structural and functional connectivity. Second, we provide a framework to 

expand beyond simple cursor control BCIs to build on bimanual interactions and design systems for 

dexterous hand control.  By understanding the nature of coordination and dissociation for BCI motor 

control as well as the functional utility of recording scale we hope to push ECoG based BCIs towards 

the gains that have been seen with SUA and MUA based systems.  First, however, there is one last 

aspect of ‘control’ that has be examined: the human interaction with and perception of BCI control. 
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Chapter 5: Effecting Control III – The Ghost in the Machine. 
 

In parallel with understanding the relationship between brain-computer interfaces (BCIs) and 

motor control, it may be important to attempt for a better specification of the concept of “control” 

in BCIs and neurofeedback (NF) research.  To that extent we aim to distinguish “self-control of brain 

activity” from the broader concept of “BCI control,” since the first describes a neurocognitive 

phenomenon, as discussed previously in part I and II, and is only one of the many components of “BCI 

control.” As per this distinction, we posit a conceptual framework based on dual-processes theory 

that describes the cognitive determinants of self-control of brain activity as the interplay of automatic 

vs. controlled information processing. Further, we attempt to distinguish between cognitive 

processes that are necessary and sufficient to achieve a given level of self-control of brain activity 

and those which may not.  Those cognitive processes which are not necessary for the learning process 

can hamper self-control because they cannot be completely turned-off at any time, i.e., ipsilateral or 

efferent copy representation of motor behavior. This framework aims at a comprehensive description 

of the cognitive determinants of the acquisition of self-control of brain activity underlying BCI schema 

such as those discussed herein which require the user to achieve regulation of brain activity as well 

as some form of neurofeedback learning.  This will hopefully help provide a modicum of perspective 

as per the experience subjects have in interacting with these systems. 

5.1 The Challenge of “Specifying Control” 
In the process of using BCIs, individuals learn how to induce certain patterns of brain activity, 

which can be detected and transcoded into some form of action or feedback in the external device. 

One special case of BCI is neurofeedback (NF), in which the aim is not purely to control an external 

device but rather to use external feedback to modulate specific aspects of physiological signal 

intrinsic to the brain, i.e., alpha or gamma waves.  As already discussed in some detail and shown 

repeatedly over the past 40 years, human and nonhuman animals are able to learn to use BCI/NF 

with a short amount of training (Sterman, 1977; Nicolelis and Lebedev, 2009; Phillippens and 

Vanwersch, 2010). Generally, the term “BCI control” has been used interchangeably to refer to two 

different processes. On the one side, “BCI control” refers to the ability to control an external device 

and can be seen mainly as a complex problem of neuroengineering (Donoghue, 2008). This definition 

simultaneously involves neuro-bio-psychological, data analytical and ergonomical aspects (see Kübler 
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et al., 2011). On the other side, “BCI control” may refer to the much more specific ability of an 

individual to control some aspects of his/her own brain activity (Hinterberger et al., 2003; Halder et 

al., 2011), which is clearly a neurocognitive topic that is central but not restricted to BCI/NF. Broadly 

speaking, not only BCI/NF but many other processes such as meditation techniques (Tang et al., 

2014), emotion regulation (Thayer and Lane, 2000) and even psychotherapy (Beauregard, 2007) also 

induce some form of self-control of brain activity.  This is becoming especially important as BCI stray 

from motor to more communication or emotional regulation (DBS for depression). (Blankertz et al., 

2010; Broccard et al., 2014) Since the definition of “BCI control” from either a neuroengineering 

perspective or from a neurocognitive perspective seems to differ, it is necessary to disentangle both 

views.  For the sake of transparency, “BCI control” as self-regulation of neuronal activity will be called 

hereafter “self-control of brain activity.”  With the aim of better understanding BCI/NF learning, the 

first step to characterize “self-control of brain activity” is to specify the cognitive mechanisms 

responsible for learning control.  The more popular models of BCI/NF discuss “operant conditioning” 

and a “motor skill learning” as these mechanisms (Hammer et al., 2012 & Wander et al, 2013). In fact, 

our group has previously shown how similar “BCI learning” is to general “motor learning”, at least in 

regards to regions of cortical activation.  However, many studies indicate that other cognitive 

mechanisms such as locus of control towards technology (Burde and Blankertz, 2006; Ninaus et al., 

2013; Witte et al., 2013), aptitude towards BCI (Hammer et al., 2012; Halder et al., 2013), motivation 

(Kleih et al., 2010) and spontaneous strategies (Kober et al., 2013) also influence BCI or NF learning. 

As a consequence, these predictors may either constitute a secondary correlate of self-control of 

brain activity or may represent key cognitive processes in addition to conditioning and skill learning, 

aka the “ghost in the shell.”  

Given the high variety of cognitive and emotional processes apparently associated with self-

control of brain activity and BCI learning, it is particularly useful to define a simple but 

comprehensible framework to evaluate the common and unique contributions of each one of these 

processes.  Who or what is in control during BCI/neurofeedback?  Some researchers have related a 

dual-processes theory to BCI/NF learning (Lacroix, 1986; Hammer et al., 2012). In the following, we 

briefly elucidate how this theory can be employed to better understand how the processes 

mentioned above might determine self-control of brain activity and why this might be important for 

bimanual coordination within the abstracted BCI system. 
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5.2 Two Types of Mental Activity 
The dual-processes theory categorizes the whole mental activity into two main types of 

processing: more automatic and capacity-free processes (i.e., type I processes) vs. more controlled 

and capacity-limited processes (i.e., type II processes) (Wood et al., 2014).  Type I processes reflect 

the automatic, capacity-free, effortless and context-specific information processing such as for 

instance trying to open the office door with the home key because one has been thinking about 

dinner. Moreover, type I processes are usually unconscious and difficult to control through self-

instruction. Type II processes reflect the activity of a supervisory attention system, specialized in 

monitoring and regulating the activity in other cognitive systems (Shallice and Cooper, 2011). Type II 

processes are usually in the center of our focus of attention and may be regulated mainly by self-

instruction.  They are also fundamental for executive functions and metacognitive abilities (Bewick et 

al., 1995).  Accordingly, control beliefs are much more related to the function of the type II processes 

while the heuristics regulating most of our cognitive activity and behavior are type I processes.  

A central aspect of the dual-processes theory is that both automatic and controlled processes 

have control of behavior as well as of different aspects of cognition (Ferrer et al, 2013) but both learn 

from and react to different aspects of the task at hand.  Automatic systems learn only through 

cumulative reward while controlled systems are more flexible, context-oriented and learn fast from 

instructions. The latter most closely mimics that of a motivated BCI user.  However, motivation itself 

may consist of a more controlled intrinsic motivation, highly sensitive to self-instruction and self-

efficacy beliefs, and a more automatic extrinsic motivation, which is more sensitive to the current 

amount of reward received (Ryan and Deci, 2000). Accordingly, as long as some reward can be 

obtained during BCI/NF learning, automatic processing may predominate. Controlled processing are 

then engaged when negative feedback predominates over longer periods of time and will have a 

larger impact, if the participant shows high levels of intrinsic motivation.  In summary, dual-process 

models such as Lacroix (1986) make clear that self-regulation is not a unitary process but rather the 

result of the conjoint action of type I and type II processes.  Also, while not an explicit corollary, these 

are analogous to the Bayesian descriptions of information processing and decision making in motor 

programs briefly mentioned previously.  In our BCI studies, it can be important to note what type of 

process we are actually studying. 
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5.3 A Framework of Self-control of Brain Activity 
Automatic and controlled processes can determine self-control of brain activity in very 

different ways.  Even more, not every cognitive process is necessary and sufficient to perform a 

specific BCI/NF task; only a small subset may play a key role. The remaining mental activity – that is 

neither necessary nor sufficient for a specific BCI/NF task – will act on BCI/NF learning in one of two 

ways: firstly, this activity can interfere with the learning process, if it hampers self-control of the 

specific aspect of brain activity being targeted in a specific BCI/NF task. Secondly, activations can 

promote the learning process indirectly, if they do not interfere with the activity in that small subset 

of both automatic and controlled processes necessary and sufficient to perform the BCI/NF task at 

hand. Although, while for some BCI classes, such as those employing certain kinds of stable and 

specific brain signals (e.g. SSVEP), the influence of unspecific processes signal is barely important, 

cognitive BCIs (Astrand et al., 2014) or BCI classes based on cognitive tasks such as mental calculation 

and motor imagery (Halder et al., 2011; Hammer et al., 2012) should be more subject to the effects 

of different forms of self-control over brain activity.  Based on the differentiation between automatic 

vs. controlled processing as well as necessary vs. unnecessary processes, a framework of self-control 

of brain activity can start to be defined.   

The optimal level of self-control of brain activity in a local control network is achieved under 

two main conditions: (i) avoidance of irrelevant associations between internal states and external 

reward; and (ii) staying engaged and focused on the task at hand without distractions. Condition (i) 

can be achieved when activity in the organismic control network is reduced to a minimum and 

condition (ii), when the central control network frees the most of its limited resources for the local 

control network.  

Inspired by the work of Neuper and colleagues (Wood et al., 2014), we can adopt a framework 

of three concentric circles (Figure 4) representing the three sources of self-control. First, the outmost 

and thus most unspecific level of response to feedback reflects basically automatic processes. 

Second, the middle circle depicts central control networks performing controlled processing. Finally, 

in the innermost level, we describe networks responding specifically to the BCI/NF learning protocol. 

This local control relies on both automatic and controlled processes. We define those automatic 

processes unnecessary to perform a given BCI/NF task as the organismic control network. We call 

them organismic control because it reflects the activity of the thousands of automatic and 
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unconscious mental processes regulating the largest part of cognitive activity (Dijksterhuis and 

Nordgren, 2006). The interference of these processes is high when unnecessary automatic reactions 

to feedback are triggered, which compete with the learning process taking place in the local control 

network. Rumination, for instance, describes the intrusion of negative feelings about past 

experiences in the stream of thoughts and emerges primarily during relaxation (Nolen-Hoeksema et 

al., 2008).  

 

Figure 4 - A schema of different types of self-control of the brain activity. A schema of different types of self-control 
of the brain activity. Specific cognitive processes such as for instance motivation, mood, attention and executive 
functions are represented by black dots. Black arrows connecting the dots represent the interactions between the 
different cognitive functions. Two dots are depicted over the domain of organismic control network to illustrate that 
these processes are largely independent from one another. The contribution of the three types of self-control to 
physiological signals is represented by the dashed lines linking the specific cognitive processes to the physiological 
signals being recorded for BCI/NF learning.  (Adapted from Wood et al, 2014) 

 

The intrusion of ruminative thoughts is an example of the negative impact of the organismic 

control network on self-control of brain activity during BCI/NF learning. Cognitive processes 

subsumed under organismic control network are not easily influenced by direct instructions and 

mostly not even conscious to the participant. Therefore, it may be very important to monitor any 

signs of negative influences originating in organismic control networks. This unwanted activity should 

be fed back in a timely manner during training. As a consequence, processes like increased anxiety or 

intrusive thoughts are accessible to BCI/NF users and can trigger appropriate learning mechanisms 

capable to control or suppress these processes. Finally, we define the central control network as 

those controlled processes not strictly necessary to perform a given BCI/NF task. Controlled processes 

have limited capacity, so that every bit of irrelevant information being employed in the central control 
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network will be missed by the local control network. The negative impact of central control network 

is high when improper strategies, self-instruction, over-instruction or excessive attention to the self 

(Leary et al., 2006) withdraw resources from the local control network and hamper the regulation of 

the learning process in a similar way as a dual-task (Logan and Gordon, 2001) drains resources. In 

contrast to the organismic control network, controlled processing is largely under conscious control 

and can be modulated directly by instructions (Dijksterhuis and Nordgren, 2006). In summary, the 

aim of any BCI/NF learning is to magnify the signal produced by local control networks and suppress 

as much as possible the activity elsewhere. To do that, it may be necessary to take into consideration 

the specificities of two types of cognitive activity subsumed under organismic control networks and 

central control networks, since they imply very different learning mechanisms sensitive to different 

types of cues and reward. On the one side, participants could learn to decouple irrelevant from those 

relevant automatic processes. One way to achieve this is to monitor the automatic processes 

regulating for instance negative emotional reactions and anxiety as well as with a more selective 

schedule of reward and punishment. On the other side, participants may learn to use the central 

control networks to suppress irrelevant cognitive activity operating under conscious control such as 

excessive attention to the self (Leary et al., 2006). This could be achieved by direct instruction or self-

instruction, i.e., motivated effort. Once achieved, this balance should improve the outcome of BCI/NF 

learning.  Indeed, as demonstrated in the following chapters, incorporating this way of thinking within 

the design and execution of our BCI studies can lead to marked improvement in subject interaction 

and experience with our BCIs systems. While learnable, in the particular experimental conditions of 

the clinical wards, ECoG based BCI can be extremely difficult to implement and master, despite the 

apparent SNR advantages and ease of use.  Therefore, keeping this type of framework in mind may 

be extremely valuable for continuing studies beyond the scope of this particular work. 
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Chapter 6: ECoG BCI @ the University of Washington. 
 

Whether intended as a therapeutic device or as an experimental tool for fundamental 

research, many of the constituent components of a BCI are the same. Additionally, many of the 

neuroscientific methods associated with processing of the data that drive a BCI are common across 

our different analyses. Accordingly, this section outlines the standard BCI architecture and a number 

of the experimental techniques and analytical tools that are used throughout the remainder of this 

document. Though the implementation of the individual subunits vary widely from research group to 

research group, and are generally focused on engineering efforts to improve BCI performance, the 

typical architecture for all BCIs is the same. Systems include the following: a means of recording 

neural signals, a computational algorithm to extract features of interest from those signals, a decoder 

to transform those features into one or more control signals, and a device, virtual or realized, that 

carries out the actions dictated by the control signals and provides feedback to the user via one or 

more sensory modalities. 

6.1 Components of a BCI 

6.1.1 Data acquisition hardware.  
Research in the area of fully implantable data acquisition hardware is moving quickly and will 

be critical in the development of viable and dependable BCIs. For the time being, however, the 

majority of human BCI studies use general purpose biosignal amplification systems. Most common 

electrophysiological data acquisition systems record between 16 and 256 channels simultaneously, 

at sampling rates specific to the signal being recorded. ECoG signals are typically sampled at > 1000 

Hz using either AC or DC coupled instrumentation amplifiers, depending on the intended use of the 

signals being recorded. 

6.1.2 Feature selection algorithm.  
There exists a wide variety of methods to extract features of interest from neural signals. 

Many of these are highly specific to the type of signal being recorded, such as the isolation of action 

potentials from individual neurons using a window discriminator-based spike sorter, or the spatial 

unmixing of EEG signals using independent components analysis. Often, feature selection algorithms 

are chosen to effectively leverage the strengths of the decoder that will be fed the output of the 

feature selection algorithm, with specific attention to reducing or increasing the dimensionality of 
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the feature set as appropriate. Typically feature selection also attempts transform the neural data in 

such a way that the neural signals being discriminated become linearly separable. Typically, real-time 

feature extraction in an ECoG BCI involves re-referencing one or more previously selected channels 

to reduce common mode signal, and using a spectral estimator to determine a time variant estimate 

of power in the HG range recorded from the electrodes of interest. 

6.1.3 Decoding  
Decoding architecture options are as numerous as feature selection algorithms if not more 

so.  Decoders are also typically highly application specific, based not only on the dimensionality and 

nature of the decoder outputs, but also on engineering tolerances specific to the application for which 

the BCI will be used. One trend in the field of BCI research has been toward building more intelligent 

decoders that are capable of robustly mapping motor-based neural features to BCI control, however 

the work discussed initially in this document provides an alternative view of decoder enhancement. 

We posit that decoders will benefit from additional channels of information that are more cognitive 

in nature. Understanding activity across a broad range of areas may help add context to highly 

dynamic signals that change as subjects gain proficiency and “self-control of the brain.”   This, coupled 

with improved resolution could fundamentally change how ECoG decoders, at least, are built in the 

future. 

6.1.4 Applications 
BCI applications are highly specific to their intended use. They range from EEG-based 

consumer-grade fashion devices to deep brain stimulators and neurally-controlled robotic limbs to 

communication devices or point-and-click digital cursor analogs. The content of this document 

focuses specifically on the cursor analogs for robotic reach and grasp style systems due to clinical 

relevance to the target population of patients with neuromuscular motor disorders. 

6.2 Data collection and signal processing 

6.2.1 ECoG Grids. 
In all studies described below, subjects were implanted with platinum sub-dural ECoG 

electrodes for the purpose of seizure focus localization at Harborview Medical Center and Children’s 

Hospital in Seattle, Washington. The physical design (number and arrangement of electrodes) and 

implant location of all grids were based on clinical indication.  Arrays were either 8x8, 6x8, 4x8, or 
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2x8 grids or 1x8, 1x6, or 1x4 strips with 2.4mm diameter exposed recording surface and a 1cm inter-

electrode distance.  

6.2.2 Institutional Approval.  
Subjects provided informed consent in accordance with the Institutional Review Board’s 

direction and patient data were anonymized in accordance with HIPAA mandate. All procedures were 

carried out within the University of Washington Regional Epilepsy Center, either at Harborview 

Medical Center or Seattle Children’s Hospital after informed consent was obtained. For children 

under age 18, parental consent was obtained along with consent from the child (age 14 or above) or 

assent of the child (age 7-13). The protocol was approved by the Institutional Review Board at both 

institutes. 

6.2.3 Recordings.  
Experimental recordings were performed at the patient’s bedside without interrupting the 

clinical recording systems. Either g.USBamps (GugerTec, Graz, Austria) or TDT (Tucker Davis, Florida) 

sampled 1200 Hz were used for recording. Cortical potentials referenced against a scalp electrode 

were digitized and processed using the BCI2000 software suite (Schalk et al., 2004) which provided 

real-time feedback to the user. 

6.2.4 Motor Screening 
Prior to online control, subjects performed overt motor screening to determine 

candidate electrodes for BCI use. Depending on each subject’s coverage, they performed gross hand 

motor movements (of the hand contralateral to the implant site), mouth motor movements, or both. 

Visual cues were presented for 3 sec followed by a 3 sec inter-trial interval. This process was repeated 

10-30 times for each of the two motions. Subjects were then asked to repeat this screening process 

but with imagined movement. Electrodes that demonstrated statistically significant change in HG 

power during activity as compared to rest in either or both of these tasks were chosen as candidate 

controlling electrodes. In cases where there was more than one candidate controlling electrode, the 

electrode used for online control was chosen based on the magnitude of change between activity 

and rest and/or neuroanatomical relevance.  

6.2.5 BCI Tasks 
Both ECoG BCI paradigms were driven by spectral power changes in a portion of the HG 

frequency band of a single electrode determined to be modulated by motor imagery. Only a subset 
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of the HG range was used during online control (approx. 75-100 Hz) for computational tractability 

and to eliminate the need for real-time notch filtering to reduce line noise harmonics.  HG activity 

was chosen as the control feature as it has been previously postulated that HG activity is a correlate 

of underlying population level firing rates or coherence in firing (Ray et al., 2008). 

6.2.6 Initial training: the right-justified box task 
The standard right justified box task (RJB) (Wolpaw et al., 2003) is depicted in Figure 5.  During 

execution of this BCI task, a subject is presented with one of two targets, each either occupying 

the top half or the bottom half of the right-most edge of the screen. After a cue interval of two 

sec, the cursor appears on the left edge of the monitor and travels to the right at a constant horizontal 

velocity, such that the duration of the feedback period is fixed (typically 3 sec). The subject controls 

the vertical velocity of the cursor by modulating HG activity at the previously selected controlling 

electrode (CTL); performance of motor imagery causes the cursor to travel up and remaining at rest 

causes the cursor to travel down. Their objective is to complete each trial with the cursor in the 

specified target area for that trial. HG activity recorded at CTL is mapped to vertical cursor velocity 

using a simple linear decoder that was trained in the first set of trials. The task consists of four phases: 

rest, cue, feedback, and reward. In relation to the RJB task or other 1-D tasks – targets 

occupying the top half and bottom half of the screen are referred to as “up-targets” and “down-

targets,” respectively. The cursor’s vertical velocity was updated every 40ms and controlled by 

changes in HG activity at the controlling electrode as calculated by an auto-regressive filter using the 

previous 500ms of data. This time-variant estimate of HG activity was z-normalized against 12 

seconds of stored data (6 for each target type) and then mapped to cursor velocity. The normalizer 

was typically adapting (collecting reference data and updating normalization parameters) only during 

the first run (18 trials), however in cases where non-stationarity of the signals showed obvious bias, 

the normalizer was allowed to recalibrate.  After initial training, subjects participated in further 

experiments with additional tasks (see Chapter 6-8) over the course of multiple days; duration of the 

recording sessions was dictated by the subjects’ willingness and capability to participate. 



www.manaraa.com

55 

 

 

Figure 5 - Overview of the 1-D RJB task.  Subjects were presented with a target occupying either the upper (up 
target; shown) or lower half (down target; not shown) of the right-most edge of the screen and had 3 sec to control 
the vertical position of the cursor.  Horizontal movement towards the target was preset as a function of task time. 

6.2.7 Cortical reconstructions and anatomical labeling.  
Pre-operative magnetic resonance images (MRI) were co-registered with post-operative 

Computed Tomography (CT) scans using the Statistical Parametric Mapping software package (Penny 

et al., 2006). Three-dimensional reconstructions of the pial surface were generated using Freesurfer 

(freely available for download at http://surfer.nmr.mgh.harvard.edu/) and custom code 

implemented in Matlab (The MathWorks, Natick, MA). Electrode positions estimated from post-

operative CT were projected to the reconstructed pial surface using the method outlined by Hermes 

and colleagues (Hermes et al., 2010). MRI images and projected electrode locations were normalized 

to Talairach coordinates using Freesurfer.  Anatomical labels were estimated using the Human Motor 

Area Template (HMAT) (Mayka et al., 2006), and the Talairach Daemon (Lancaster et al., 1997, 2000).  
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Chapter 7: Designing a Bimanual BCI Platform. 
 

As indicated previously in detail, much of the research on BCI has focused on developing 

assistive devices for patients with severe neuromuscular disorders, such as amyotrophic lateral 

sclerosis (ALS), brainstem stroke, and spinal cord injury, all of which result in degradation of volitional 

motor abilities (Wolpaw et al., 2002).  Thus, typically, conventional wisdom applies BCI technologies 

to cases in which there is no motor ability remaining at all.  However, there is a much larger 

population of patients that retain some residual motor function, even with degradation, who could 

benefit significantly from BCIs. In addition, looking further into the future, how could BCIs be 

augmented into a healthy-function motor system? An important question that had yet to be 

systematically studied is: can subjects use BCIs simultaneously coordinated with overt motor activity? 

More importantly, how do the cortical networks involved in the learning of this type of complex 

motor task change and what transient adaptation occurs in the targeted cortical areas that allow for 

control even in the presence of a highly mixed signal with highly simplistic decoding systems.  For 

BCIs to be functional in the real world, even for simple tasks like opening a jar with two hands let 

alone something complicated like playing piano, patients would have to be able to utilize a BCI in 

coordination with other motor behavior.  Our group has previously shown that the overall learning 

process involves motor-like learning networks, but there is a significant amount of cortical adaptation 

occurring during BCI control that is still not fully understood.  This first study provides steps towards 

identifying these changes in the framework of a dexterous bi-manual hand coordination task in which 

individuals must learn to coordinate opposing BCI and overt motor behaviors.  

7.1 A Non-invasive First Step for SimulBCI 
A successful combination of BCI and manual control could push development of new user 

interfaces. One particularly challenging case involves using sensorimotor rhythm BCIs such as motor 

imagery and manual hand control, as there is significant overlap in the brain regions used. There is 

anecdotal evidence from BCI-based gaming studies supporting the possibility, but the question of 

overlap between BCI and overt motor activity has not yet been systematically studied. In this chapter 

we report the first steps in this direction by reporting results from our initial study combining motor 

imagery BCI with joystick control. 
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Though we have so far been discussing invasive methods like ECoG, for this initial design step 

we focused on EEG BCI.  EEG non-invasively records brain signals from the scalp, and has advantages 

such as portability and cost effectiveness and accessibility to test subjects, though it suffers from a 

poor signal-to-noise ratio (Buzsáki, Anastassiou and Koch, 2012). EEG is also, unfortunately, 

susceptible to muscle artifacts when users produce eye movements or other types of overt 

movements (Wolpaw et al., 2000). Because our study explicitly aims to combine manual control with 

BCI, muscle artifacts become an important issue in contaminating EEG. We used electromyography 

(EMG) to ensure that muscle artifacts were not a major factor in the brain-control component of our 

experiments. We report results from three subjects who learned to use right-hand motor imagery to 

control the vertical movement of a cursor while simultaneously using a joystick with their left hand 

to control the horizontal movement of the cursor. All three subjects exhibited the ability to hit one 

of four possible corner targets on the screen. 

7.2 Methods 

7.2.1 Study Subjects  
Three male graduate students who were right-handed and had prior experience in motor-

imagery BCI volunteered to participate in our study. All subjects gave informed consent using study 

protocols approved by the University of Washington IRB. 

7.2.2 Data Collection 
Data were collected using g.USBamp (Guger Technologies) at a sampling rate of 1200Hz. A 

13-electrode montage was chosen such that a Laplacian derivation could be obtained over motor 

areas centered at C3, Cz, and C4 electrode positions based on the international 10-20 system for EEG 

(distance between electrodes center was ∼3.5cm). One additional electrode was used for ground and 

reference, placed at location AFz. All electrode impedances were measured and monitored to be 

within an acceptable range throughout the data collection sessions. We also placed three EMG 

electrodes on the right hand and forearm along the wrist extensor to monitor whether any right hand 

movement was being performed (as measured by EMG) during right hand imagery. EEG data were 

notch filtered between 58-62 Hz to eliminate line noise artifacts. Online right-hand imagery control 

was based on EEG data from the Laplacian derived C3 channel in our experiments, though other 

locations could also potentially have been used based upon the standard 10-20 montage. 



www.manaraa.com

58 

 

7.2.3 Subject Training and System Configuration 
Prior to the actual experiment, subjects underwent a training phase to verify that they were 

capable of performing motor imagery and to configure the BCI system’s parameters. The training 

phase used a visual cue-based paradigm with no feedback. For each subject, data were collected for 

20 trials of right-hand motor imagery (herein referred to as imagery or MI) and 20 trials of rest (i.e., 

no MI). Subjects were instructed to sit comfortably and to refrain from overt movement. For imagery 

trials, subjects were instructed to imagine moving their right hand, with imagery of fist clenching 

given as an example. For rest trials, subjects were instructed to relax and pay special care to refrain 

from blinking or making jaw/body movements. 

These data were analyzed using the BCI2000 r2 and frequency spectrum (Schalk et al., 2004) 

functions to select two or three candidate frequency bands that correlate the best with the imagery 

task. The classification feature used was estimated band power, obtained with a band-pass filter and 

moving average of 0.5 seconds. Using the estimated power for imagery and rest classes for each of 

the candidate frequency bands, we selected the frequency band with the best discriminability (based 

on mean and variance), and set a threshold function for classification. This relatively simple system 

configuration was chosen to avoid the effects of changing and re-training the classification system, 

and was sufficient for binary classification of imagery/rest classes for all three subjects. 

In the final step of the training phase, users performed online motor imagery with feedback. 

A right-justified box (RJB) paradigm was used (see Error! Reference source not found.); the cursor 

started at the left edge, moving rightward at a constant rate over the trial length until it reached the 

right edge. There were two targets, a bottom (rest) target and a top (imagery) target, that completely 

spanned the right edge such that on any given trial the random chance level of a hit was 50%. This 

online feedback paradigm is similar to the two-target task in [6]. The subject controlled the up and 

down motion of the cursor in the following manner: every 50 ms, the binary threshold-based classifier 

decided whether the recorded EEG signal was in the imagery class or the rest class. The cursor moved 

up by a fixed amount when imagery was detected, and moved down by the same amount when the 

rest class was detected. 

One online feedback block contained five imagery and five rest trials (randomly interleaved). 

Each trial consisted of the following sequence of events. First, an auditory cue (a beep) is presented 

to the subject along with the visual target. Two seconds later, the trial begins, giving the subject six 
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seconds to control the up/down motion of the cursor to the designated target region. The rightward 

movement was set such that it took six seconds for the cursor to reach the right edge. At the end of 

six seconds, the trial ended, followed by a three second break before the next trial. Subject continued 

to perform online feedback blocks until they could hit 18/20 targets consecutively. 

 

Figure 6 - Simultaneous Brain- and Manual-Control Task. The cursor (black ball) is shown in the center (the starting 
location) along with all possible targets. During BCI-only blocks, only the top and bottom (green) targets were shown. 
During the simultaneous BCI + manual control blocks, only the corner (blue) targets were shown. For any given trial, 
only one target is active. Activating motor imagery moves the cursor up, resting (no motor imagery) moves the cursor 
down. Left and right cursor movement is controlled using a joystick. 

7.2.4 Experiments and Simultaneous BCI-Manual Task 
Our experimental procedure consisted of two sessions over two days, each session lasting 1.5 

hours (including electrode setup). For all experiments, the parameters from the online feedback 

training phase (threshold classifier and mapping to cursor movement) were maintained for each 

subject. On each day, subjects ran six blocks of BCI-only (motor imagery/rest) and nine blocks of 

simultaneous BCI + manual control (using a joystick). The task setup seen in Figure 6 was used for 

both types of blocks, but different targets were shown (top/down for BCI-only, corners for 

simultaneous task). The sequence of events was the same as the online feedback training, except that 

the target could be hit before the 6-second trial duration ended. In this case, cursor movement 

stopped until the 6-second duration expired, and subjects were instructed to continue with imagery 

or rest depending on the condition.  

In the BCI-only blocks, movement of the cursor was constrained to be along the vertical axis. 

Each block contained five imagery trials and five rest trials, resulting in 30 trials per class. For the 
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simultaneous BCI + manual control blocks, the horizontal movement of the cursor was mapped to 

the left and right movement of a joystick, controlled by the subject’s left hand. Horizontal movement 

was again by a constant amount (no acceleration). Each block contained three trials each of the 

following different cases: right motor imagery + joystick left, right motor imagery + joystick right, rest 

+ joystick left, rest + joystick right. For data analysis, we pooled the joystick left and right such that 

there were two conditions: right motor imagery + joystick and rest + joystick. The nine blocks yielded 

six trials for each condition, resulting in 60 trials per class over one day. 

 

Figure 7 - Comparison of EEG Band Power for MI versus no MI. The red and blue solid lines indicate trial averaged 
power in 10-12 Hz; dotted lines indicates one standard deviation. The black dash-dot line shows the threshold 
chosen for classification. 

7.2.5 Results 
The feature selected for all three subjects was the 10-12 Hz band, since all subjects showed 

robust and consistent difference between imagery and rest classes in this band. This feature is 

validated by previous BCI work from the Wadsworth group (Wolpaw et al., 1991; Wolpaw, McFarland 

and Vaughan, 2000; Daly and Wolpaw, 2008). Though the band is maintained, the threshold function 

for each subject was different and individually determined during the initial training phase. An 

example of the threshold is shown for Subject B in Figure 7. 
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Table 1 shows the performance of the three subjects in the two-day experiment. Most 

notable is the difference in the simultaneous motor imagery BCI (MI) + joystick condition from the 

first day to the second. For subjects B and C, their first day was heavily biased toward the top targets 

(“MI + joystick” in Table 1), indicating active interference from ipsilateral motor control of the joystick. 

However, on the second day, subjects appear to have learned to overcome this interference from 

joystick control, balancing the top versus bottom target hits and exhibiting a much higher degree of 

purposeful control. 

 

Table 1 - EEG-SimulBCI Subject Performance 

It is important to note that although performance appears to be low, especially compared to 

the initial RJB screening task, the limited successes do demonstrate subject-specific control. Neither 

the up/down nor four corners task is a selection task, in which the chance outcome of a trial would 

follow the uniform probability distribution of 50% for up/down or 25% for corners. In our cursor 

movement task, a subject had a possible 140 movement steps (including along diagonals), with 62 

consecutive steps from the origin necessary to hit either the up or down target. Assuming arbitrary 

random walk, the likelihood of hitting either the up or down target in the time allotted (6 secs) is low. 

To ensure consistent movement and a successful hit, a subject must maintain their signal for at least 

three seconds (62*50ms). Since the chance of hit in this case is less than 0.005%, any hit requires 

concentrated effort on the part of the subject.  

Histograms of the 10-12 Hz band power show interesting differences in alpha 

desynchronization activity (assessed with estimated band power from 10-12 Hz band-pass filter and 
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moving average of 0.5 seconds, units of V2) between the imagery and rest classes for BCI-only and 

simultaneous BCI + manual control. Figure 8 shows 10-12 Hz (“alpha”) band power over C3 channel 

in the last 1.5 seconds before either a successful hit or timeout of a trial for subjects A & C (we show 

more in-depth histograms for subject B in Figure 9). Note that for subject C, who had the lowest 

performance, there is significant overlap in 10-12 Hz power between the imagery and rest classes 

during BCI + manual control. We postulate that this overlap may have been a factor in the low 

performance.  Figure 9 shows similar histograms with channels Cz and C4 included for Subject B, who 

had the highest target hit percentage on day 2. As expected from previous work (Wolpaw et al., 2002; 

Ang et al., 2010; Prasad et al., 2010; Friedrich, Scherer and Neuper, 2012), right hand MI-only resulted 

in a power decrease in the 10-12 Hz (“alpha”) band over the contra-lateral hemisphere (C3), while 

central (Cz) and ipsi-lateral (C4) areas show similar band power distributions (Figure 9, right column). 

Simultaneous MI + joystick resulted in more widespread alpha desynchronization (Figure 9, left 

column) and an overall decrease in power. However, there is still specificity in the C3 region when 

compared to Cz and C4. (Figure 9, top left). 

 

Figure 8 - Distribution of EEG Power for Simultaneous BCI+Manual and BCI-only Tasks. Histograms of 10-12 Hz 
power estimates for subjects A & C over location C3 on day 2 during the last 1.5 seconds prior to target hit or miss. 
Top row: Subject A, Bottom row: Subject C. Left column: Simultaneous BCI + manual control, Right column: BCI-only. 



www.manaraa.com

63 

 

Bins are the same within each subject. To help visualize the representative range of the data, outlier values (largest 
2% of values) are collapsed into the last bin. 

 

 

Figure 9 - Distribution of EEG Power (cont.) for a Single Subject. Histograms of 10-12 Hz power estimates for subject 
B on day 2 during the last 1.5 seconds before a target was hit or end of trial (no hit). The data distribution shows that 
the subject was able to reduce power specifically over the control electrode location (C3) using right hand imagery, 
even during simultaneous BCI + manual control condition (left column), although to a lesser extent than BCI-only 
conditions (right column). Bins are the same within each channel (not the same across channels). To help visualize 
the representative range of the data, outlier values (largest 2% of values) are collapsed into the last bin. 

7.3 Considerations for next steps 
Our results suggest that subjects can learn to exert direct brain control over a device while 

simultaneously engaging in overt motor control over another aspect of the same device. In particular, 

two of the three subjects in our preliminary study showed marked improvement in performance from 

the first day of experiments to the second in the simultaneous BCI + manual control task. A possible 

concern with the present study is whether the subjects used some form of muscle activity to control 

the cursor instead of imagery-based BCI control. Two types of evidence suggest otherwise. First, EMG 

activity recorded on the right hand does not appear to be correlated with the EEG signals used for 

right hand imagery-based control: the r2 correlation of the EMG signals between imagery and rest 

classes were 0.04, 0.13, and 0.05 respectively for subjects A, B, and C. Second, the histograms for 

power estimates in Laplacian-derived C3, Cz, and C4 channels show that C3 exhibited clear 
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differences between imagery and rest conditions, while C4 and Cz did not; this would not be expected 

in the event of widespread artifact contamination. 

It is well-known that muscle artifacts associated with facial movements such as jaw and 

eyebrow movements can have significant effects on EEG signals (see, for example,). However, the 

current study suggests that muscle movements that are distant from the scalp, such as the overt left 

arm movements used in the study, may not have such a strong effect on the EEG signal. Instead, 

activation of overlapping motor areas for imagery and movement may be a major factor affecting 

EEG BCI in these cases (Miller et al., 2010). Evidence for this suggestion can be seen in the histograms 

in Fig. 9 for C3 and C4, where overt movement of the joystick during rest trials also caused the power 

distribution to shift into the lower power range, similar to imagery trials. 

The study reported here was the first in a series of studies aimed at systematically 

investigating the extent to which BCI use can overlap with normal physical activity. Further studies, 

as elucidated in the rest of this document, evaluate effects of long-term training, and include a larger 

subject pool utilizing electrocorticographic arrays for more focused control and nuanced examination 

of cortical changes during task performance. It is our hope that these efforts will help broaden the 

reach of BCIs by expanding their realm of applicability to the larger populations of individuals. 
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Chapter 8: Bimanual Coordination with Electrocorticography. 
 

Building off the overall design in Aim 1, in this study, we attempt to answer the important 

question of whether individuals can use BCIs in their current state in simultaneous or concurrent 

coordination with overt motor activity akin to that which occurs during normal bimanual natural 

movement. Of importance, as well, is how the cortical networks involved in the learning and 

mediation of this type of complex motor control might adapt and affect the already challenged BCI 

decoding and translating systems. In the previous chapter, we have shown that for a noninvasive 

bimanual BCI control paradigm that even with the interfering activations from the overt behavior 

ipsilateral to BCI-control, users are able to develop a remarkable level control with enough training 

(Cheung et al., 2012).  However, the initial task developed was not sufficient as users developed 

staggered, switching strategies which reduced the periods of concurrent bimanual activation.  In 

addition, the basic task was extremely difficult, with subjects reaching fatigue points before full 

success could be attained.  Nevertheless, the limited control is promising, though the modality of EEG 

prevents the deep examination of the byplay between overt and BCI bimanual control.  For that, we 

need to scale to more invasive methods, in this case ECoG, with a newly designed task. 

Some potential insight for what to expect when moving beyond EEG comes from the non-

human primate literature in which complex hand grasp and limb behavior has been studied in 

infinitesimal detail.  In these models, it has been shown that cortical networks are, in fact, optimized 

for bimanual limb control, and thus, for neural populations in a cortical hemisphere tuned towards 

control or movements of the contralateral hand or arm, there is a limited representation of the 

ipsilateral limb kinematics as well (Ganguly and Carmena, 2009; Ganguly et al., 2009).  In a similar 

vein, at the level of local field potentials in humans, this type of mixed signal has been seen as a 

detectable but less pronounced 70-200Hz high gamma (HG) frequency response with a boosted beta 

frequency (12-30Hz) profile for finger movements ipsilateral to the recording site (Zanos, Miller and 

Ojemann, 2008; Scherer et al., 2009).  Therefore, much for the same reasons that many BCI paradigms 

see this neural activity as signal noise (Prasad et al., 2010) and require ‘healthy’ test subjects to 

minimize overt movements during testing, we hypothesize that residual movement abilities not 

directly associated with the BCI control could affect the accuracy of the BCI performance.  However, 

in one non-human primate study, for the case of simultaneous execution of BCI and overt movement, 



www.manaraa.com

66 

 

a force hold behavior during a cursor task, monkeys were able to gain proficiency with their paradigm 

without completely disrupting their learned neuroprosthetic control skills (Orsborn et al., 2014).  This 

is, then, promising for expansion of similar studies in humans. 

It is clear, that for real bimanual coordination, though challenging, the chaotic cortical 

networks manage to enable learning and development of these complex motor behaviors (Kadivar et 

al., 2011).  As our group has previously determined, the overall learning process for BCI tasks involves 

motor-like learning networks and, as such, dexterous bimanual BCI coordination is not so 

unfathomable despite the difficulties (Wander et al., 2013).  We believe leveraging a more focal 

methodology such as electrocorticography (ECoG)  (Leuthardt et al., 2004; Blakely et al., 2009; Moran, 

2010) which also allows for examining distributed cortical activity(Darvas, Ojemann and Sorensen, 

2009; Gomez-Rodriguez, Grosse-Wentrup, et al., 2010; Miller et al., 2010; Wander et al., 2013), 

should allow for the development and use of a BCI despite these complex cortical interactions.  Rather 

than consider any opposing movement execution activity as a hindrance to BCI performance, we 

examine to what extent they can coexist when the activity is distributed cortically.  For five subjects, 

we train and evaluate their performance and cortical response for a bimanual 2-D center-out cursor 

task in which they are required to coordinate key presses with one hand with motor imagery of the 

other, opposite hand.  Though challenging, subjects show gains in proficiency and ability, especially 

in the situations requiring concurrent output of both motor behaviors for success.   

8.1 Materials and Methods 
All subjects were patients with intractable epilepsy undergoing monitoring with implanted 

subdural ECoG electrodes for seizure focus localization at either the University of Washington’s 

Harborview Medical Center or Seattle Children’s Hospital.  Electrodes were platinum-iridium 

electrodes (Adtech Inc., Racine, WI or Integrahealth, Plainsboro, NJ) suspended in silastic with a 1cm 

inter-electrode distance for all arrays and 2.3mm diameter of exposed surface for each electrode.  

Electrodes were placed by medical staff over the cortical areas as per the clinical indications.  Patients 

provided informed consent to participate as subjects for research activities during clinical monitoring 

under Institutional Review Board guidelines for University of Washington and Seattle Children.  For 

any patient under 18 years of age, parent(s) or legal guardian(s) provided consent.  For inclusion in 

this study, patients had to present with intact hand motor function, with implant coverage such that 

at least one ECoG electrode would be over the traditional M1 hand motor knob and show a 
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corresponding signal response to hand movement (further discussed below).  In addition, as epilepsy 

can often result in various cognitive impairments, after consent subjects had to be able to 

satisfactorily comprehend and attend to behavioral tasks before interacting with the BCI task.  

Though additional subjects were recorded from for parallel studies, all subjects discussed herein meet 

the stated criteria. 

8.1.1 Subjects  
Subject demographics and research involvement for this study can be seen in Table 2. This 

study includes 5 subjects ranging from thirteen to fifty with three females and two males.  Relative 

implant locations can be seen in Figure 10-a. Due to available experimental time and unexpected 

clinical interventions during experimentation, subjects performed different lengths of tasks, though 

all went through the same basic protocols.  Subjects completed as many task runs as possible; the 

number of recording sessions was highly dependent on subject’s rate of fatigue and interruption from 

clinical staff. At the least, 24 trials were attempted per run up to as many as 64. To prevent subject 

fatigue and reduce the risk of interruption and improper task completion, each task run was limited 

a max of 10minutes, though both still occurred as noted. 

 

Subject 

ID 
Age Gender 

Implant 

Hemi. 

‘Simul’-BCI Task Information and Notes 

BCI 

Electrode 

Overall 

Acc. 
Session Notes 

Previous 

BCI 

3f6772 

(S1) 
26 M B (L) 21 52.1% Single Session, day 6 after implant. 2 long Runs. none 

6b68ef 

(S2) 
50 F R 5 63.9% 

Single Session, day 6 after implant. 4 short Runs; often 

interrupted by clinical staff 

1-D BCI, 

d5/d6 

6cc87c 

(S3) 
11 F L 26 81.8% 

Single Session, day 4 after implant.  Few medium Runs; 

several aborted runs (removed). 

1-D BCI,  

d4 

a9952e 

(S4) 
13 F L 7 46.0% 

Single session, day 10 after implant.  Few short Runs; one 

long run. Many clinical interruptions 

1-D BCI, 

d9 

ada1ab 

(S5) 
16 M R 29 58.1% 

Single Session, day 6 after implant.  Few medium Runs; 

some aborted runs (removed); clinical interruptions. 

1-D BCI, 

d5 

Table 2 - Demographics and task information for implanted subjects. Included are subjects’ HIPAA/IRB compliant 
experimental ID, age and gender at time of experiment, the general implant location, the electrode used for BCI 
interaction, their overall performance, as well details regarding their experimental process. Further details are 
provided in the following sections. For S1, Bilateral strips were implanted with only the Left hemisphere recorded 
during experimentation. 

 



www.manaraa.com

68 

 

8.1.2 Data Recording and Stimulus Presentation  
Experimental recordings were taken at the subjects’ bedsides without interrupting the 

primary clinical recordings. Data were acquired at 1200Hz using four synchronized sixteen-channel 

g.USBamps (GugerTec) (Kapeller et al., 2014) connected to a high-performance Sager laptop 

computer. Data were anonymized in accordance with Health Insurance Portability and Accountability 

Act mandate. For some subjects, 1x8 strips of electrodes were implanted in lieu or in addition to the 

standard 8x8 electrode grid.  Recordings were hardware limited to 64 channels; only the electrodes 

used during experimentation are shown in Figure 10-a.  Cortical potentials were referenced against 

a scalp electrode and digitized and processed in the BCI2000 software suite(Schalk et al., 2004).  Task 

data were also synchronized with ECoG within the same software setup.  

 

Figure 10 - Relevant Implant Locations and Behavioral Screening Results. a) Implant location for grid arrays 
recorded from during experiments shown for each subject. Some subjects had multiple arrays and grids; unused 
arrays not shown for simplicity.  Heat map shown for HG response to hand movement as part of behavioral 
screening, described further in Methods. Patient MR and CT scans were used to create 3D head model 
reconstructions showing the spatial arrangement of the implanted array in relation to the cortical tissue below. b) 
Heatmap is self-scaled by subject RSA values to show the degree of activity versus rest for each subject.  Blue 
columns, seen for S1 and S4, represent channels not used for those subjects in the standard 8x8 grid array.  c) Time-
frequency representations of frequency band-power from 0-200 HZ over the hand movement period for RSA-
significant electrodes for each subject.  This helps valid statistical selection and shows in-time development of the 
task-relevant frequency response.  d) Due to clinical interventions during the screening session, behavioral response 
for S5 was much muted.  Hand-related electrode was validated for this case based upon separate clinical mapping 
and testing. 
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8.1.3 Data Processing and Signal Analysis 
All channels recorded from the electrocorticographic grid were common average re-

referenced by subtracting the average signal recorded at all electrodes. This was done in an attempt 

to remove any common noise introduced by activity recorded at the scalp reference electrode in the 

electrically noisy hospital environment. As per previous ECoG studies from our group, the re-

referenced signals were band pass filtered for the high-gamma (HG) range (70-200 Hz) using a fourth-

order Butterworth filter (Darvas et al., 2010). The square of the magnitude of the Hilbert Transform 

was then used to calculate a time-variant estimate of band-power (Wander et al., 2013). Data were 

then log transformed in order to become approximately normally distributed for proper statistical 

analyses (Blakely et al., 2009). To account for differences between recording sessions, this log-power 

estimate was further z-normalized with respect to the rest (behaviorally quiescent) periods for each 

channel and session. This signal is heretofore discussed as the HG signal or HG activation. Similar 

extrapolation was done for the lower frequency beta range (8-32 Hz) as well, though not used for 

primary analyses. 

In the screening motor behavior tasks, for every electrode and movement type, we calculated 

a high and low activation weight by comparing the distributions of HG and beta for each movement 

type with the corresponding rest distributions.  This provided an activity metric based upon the 

signed, squared cross-correlation value, a measure of how much of the variance in power across both 

movement and rest epochs was accounted for by the difference in the mean power between 

movement and rest epochs (Miller et al., 2007).  For convenience, this is referred to as the RSA values 

(HG or β RSA) and can be thought of as analog of the r2 metric, without the regression. (Miller et al., 

2007) 

8.2 Experiment Protocol 
Though duration was quite different, each subject went through the same basic protocol: a 

screening task, a training task, and the BCI task. Subjects were given verbal instructions at each stage 

with information on what they would be presented and what was expected of them for each task.  

Instructions were repeated at the beginning of each run.  The screening task was run with a battery 

of other traditional cognitive psychology and behavioral tasks the day before BCI training. Due to 

available experimental time and competing parallel experiments, no subjects performed this BCI task 

for more than one contiguous session, though some patients performed a prior 1-D center out cursor 
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task in a previous session.  The decision to perform both the 1D and concurrent BCI task was based 

on time available with the subject.  

8.2.1 Screening Process 
Before attempting online control, subjects performed an overt motor screening exercise, in 

addition to clinical motor evaluation. Subjects were visually prompted to move their hand or tongue 

for 3s with a 3s rest period in between each movement. This is repeated about 20 times. Subjects 

then repeat the task, imagining the prompted movement without executing an overt motion.  As 

described previously, the signed, squared cross-correlation measure (RSA) can show how many 

electrodes are active during task compliance. For each subject and task type, the HG and β RSAs were 

calculated for all electrodes (Figure 10-b).  For each electrode with significant task-relevant activity 

(non-zero HG or β RSA), an aggregate time-frequency representation from 0-200 Hz for each task 

class was built to examine the frequency power change and distribution over time (Figure 10-c). 

Electrodes were also plotted in relative spatial orientation (Figure 10-a) as per their cortical location, 

to validate activity with anatomical landmarks. The electrode with the highest significance in the 

narrower 70-90Hz band over a putative hand motor region was then chosen as a candidate for use in 

BCI control.  Due to their physical condition and possible drug interactions during screening, Subject 

5 (ada1ab) did not show any robust HG activation during screening (Figure 10-d).  However, clinical 

mapping and localization performed by medical staff showed viable electrode candidates for hand 

motor coverage which was confirmed during training. 

8.2.2 Training 
The task experienced by some subjects was a one-dimensional variant of the center-out task 

that has been used in numerous invasive and non-invasive BCI studies (e.g., (Simeral et al., 2011)). 

Subjects are presented with the target for 2-3s (the ‘cue’ period), then the cursor appears and the 

subject must modulate neural activity of the controlling electrode to move the cursor into the space 

defined by the target (the ‘feedback’ period). To succeed in any given trial, the subject must move 

the cursor into the space defined by the target and maintain it within that region for a specified dwell 

time (1s). If the cursor leaves the target before this dwell duration has completed, any subsequent 

entry into the target area will still be required to dwell for the entire duration of the dwell time.  

Movement of the cursor was restricted to vertical dimension and targets were placed along the 

vertical line that passes through the cursor origin. Unlike the standard center-out task, in this case 
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targets had properties other than location that varied on each trial.  Targets were placed either above 

or below the origin at one of two distances from the origin (20% or 35% of the total screen height). 

They were also be one of two diameters (8% or 16% of total screen height).  Overall this was a very 

difficult task, with hit rates being 14.5%, 45.5%, 45.3%, and 16.7% for Subjects 2-5, respectively, with 

chance around 25%.  As the Motor Imagery control scheme between this task and the Concurrent BCI 

task was the same, signal gain and offset parameters were ported between the two tasks.  For Subject 

1, who did not perform this task, these parameters were derived from an brief 1-D BCI version 

(vertical targets only) of the primary 2-D task running the Normalizer/Adaptation pipeline, described 

further below, before directly engaging with the full task. 

8.2.3 Bimanual Concurrent BCI Cursor-Out Dwell Task  
Following screening and training, subjects performed a 2-D center-out cursor dwell BCI task 

using hand motor imagery (contralateral to hemisphere of implant) to control the vertical movement 

of the cursor and arrow key presses (Key) with the opposite hand (ipsilateral to implant) to control 

horizontal movement (Figure 11). ‘Brain control’ of the cursor was driven by spectral power changes 

in the 70-90Hz band of a single electrode during modulation of motor imagery.  

8.2.3a BCI Control Scheme 

The cursor’s vertical velocity was updated at 40ms driven by changes in HG activity at the 

controlling electrode as calculated by an autoregressive filter using the previous 500ms of data. 

Horizontal movement of the cursor was mapped to overt presses of the right or left arrows keys by 

the opposing hand.  Consistent motor activation was insured with a center-facing gravity on the 

cursor in the horizontal axis, requiring the subject to continuously press a key to keep the cursor 

moving in the desired. In the horizontal direction, the cursor x-position is updated at 30Hz; with each 

update the cursor position moved (|right - left key presses| * key press distance) – gravity distance, 

where key press distance is 1.39% and gravity reversal distance is 0.0005% of the total workspace 0-

1(AU). To reach diagonal targets, a subject would need to exhibit and maintain concurrent control. 

To aid with engagement and motivation, a running score was provided based upon target hit and 

cursor distance from the center of the target. Task difficulty could be adjusted by changing the 

diameter of each target based on a difficulty slider (5 to 1, 1 being smallest diameter and highest 

difficulty). Eight targets distributed radially were presented at random as shown in Figure 11-a.   
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8.2.3b BCI Trials 

We utilized a block-randomized trial design, to present the user with an approximately equal 

number of occurrences of each target type, even in runs that were aborted before completion, while 

controlling for potential order effects between trial types. Each block consisted of a single 

presentation of each of the eight potential targets. Each standard run consisted of three consecutive 

blocks. Each trial started with the target being cued in one of the 8 locations. Two seconds later the 

feedback period began with cursor at the center of the screen. Subject was given control for six 

seconds, followed by a blanking of the screen, with the score still shown. The inter-trial interval was 

one second with some jitter. Figure 11-c shows the schematic of a single trial.  Subjects were 

instructed to imagine moving their hand (contralateral with respect to hemispheric coverage) when 

presented with targets in the upper half of the screen (up or +y targets). When presented with targets 

in the bottom half of the screen (down or –y targets), they were instructed to ‘rest’ or not engage 

with motor imagery. Due to the use of a single finger for right & left arrow key presses, targets were 

consolidated and re-categorized by activity type (target category) where TC1 requires only motor 

imagery ((+)MI) to be reached, TC2 requires concurrent control of motor imagery and key presses 

((+)MI + Key), TC3 utilizes only arrow key control (Key), TC4 requires a quiescence of motor imagery 

coupled with key presses ((-)MI + Key), and TC5 needing purely downwards motor imagery ((-)MI) 

activation.  A cartoon of this is presented in Figure 11-b for visual reference.  Duration of each 

recording session and the number of runs was dictated by the subjects’ willingness and capability to 

participate at the time of experimentation and as per clinical constraints.  

8.2.3c Quantification of Behavioral Outcomes.  

Though success on a trial is formally defined as moving the cursor to the target edge (a hit), 

the task was designed such that there were other behavioral metrics that can be extracted to 

facilitate statistical comparisons of performance. The dwell time and rate provides for a score metric 

as an analog of precision.  Additionally, we assessed integrated squared error (ISE) of cursor position 

relative to the nearest edge of the target on each trial.  
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Figure 11 – Two dimensional, Center-Out, Cursor Dwell BCI task. a) Eight targets distributed radially were presented 
at random. Subjects performed a 2-D center-out cursor dwell BCI task using ‘contralateral’ hand motor imagery (MI) 
to control the vertical movement of the cursor and keyboard presses with the ‘ipsilateral’ hand (Key) to control 
horizontal movement of the cursor to reach target center. The task window was rectangular justified to a 4:3 aspect 
ratio with vertical edges and a black background. A running score was provided in the top right corner based upon 
cursor distance from the center of the target after contact. b) ‘Brain control’ of the cursor for vertical velocity was 
driven by spectral power changes in HG of a single electrode during modulation of motor imagery. Targets can be 
categorized by level (1-5) based on the output behavior required from the subject to achieve success. The BCI control 
scheme is further described in text. (c) Each trial started with the target being cued in one of the 8 locations. Two 
seconds later the feedback period began with cursor at the center of the screen. Subject was given control for six 
seconds, followed by a blanking of the screen, with the score still shown. The inter-trial interval was one second with 
some jitter. Score was calculated through each run to provide subject with a running, motivating, analog of 
performance. 

8.3 Results 
Subjects performed between 64 to 160 total trials, with a reduced number of viable trials 

based upon clinical or user interruption. These aborted trials as well some early trials in which 

subjects talked with researchers to clarify instructions or were otherwise distracted were discarded 

from analysis to ensure proper comparisons between all control behaviors.   
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8.3.1 BCI Performance 
Due to the gravity element in the x-direction and the velocity maximums defined by the 6 

second window, chance levels were not 12.5% for all targets as with a traditional 8 target center out 

task.  Rather, chance was defined by the necessary output behavior.  For right and left targets along 

the x-axis requiring only key presses (TC3), the gravity element reduces chance to 0%.  Only with a 

continuous regular output of arrow key presses could a user hit one of these targets. An accidental 

tap or hold down of the key would only move the cursor one frame in the ‘+/-‘ x direction, which 

would be returned back one increment the following frame.  For targets requiring motor imagery, 

individual chance performance levels varied from subject to subject based on the number of trials 

performed and differences in cursor kinematics due to variability in the BCI decoder. To characterize 

chance task performance under the null hypothesis that subjects did not have volitional cursor 

control, we replayed all recorded cursor trajectories with a randomized target location and 

recalculated hit rate and ISE. This process was repeated 1000 times per subject to characterize the 

distributions for hit rate and ISE under the null hypothesis.  Assuming proper keyboard output, 

average chance for all targets with |y>0| coordinates were 26.7%, 19.3%, 22.8%, 25.8%, and 20.5% 

for each subject, respectively.  As reported in Table 2, all subjects perform above chance with overall 

accuracies of 52.1%, 63.9%, 81.8%, 46%, and 58.1%, respectively.   

However, as Figure 12, demonstrates, this alone does not provide an adequate 

representation of performance.  Figure 12-a, compares subjects’ accuracy and precision (score).  

Ideally, subjects would both gain accuracy and precision with more training. This is, in fact the case, 

for subjects 1 and 4.  For Subjects 2 and 3, however, though their overall hit-rate does improve initially 

with better precision, both slightly lose accuracy over time, though subject two’s overall precision or 

ability to dwell improves dramatically.  Subject 5, on the other hand, seems to become worse overall 

with training, with their final run hit-rate barely being over chance.  Further examination of these 

trends, shows that the loss in ability is primarily driven by gross misses in specific target categories 

(Figure 12-b).  For example, subject 5’s poor performance is clearly driven by an inability to hit TC1 or 

TC2 targets, both types requiring (+)MI output.  Similarly, Subject 3’s loss in accuracy is driven by 

misses of TC5 ((-)MI only), despite a 100% hit rate for TC4 ((-)MI + Key). 
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Figure 12 - Subject BCI Performance. a) Accuracy vs. Precision (Score) shown for each subject.  Accuracy is the overall 
hit rate, while score reflected the degree of precise dwell and center reaching ability. The first trial for each subject 
is shown as a small triangle in the subject’s color.  S5 does indeed reduce in both accuracy and score over time, while 
the other subjects show modest relative gains from start. (b) Accuracy is shown for each target category (collapsed 
from 8 to 1-5) across all runs. Subject legend same as in (a). The strangeness in S5’s overall performance can be seen 
here as a result of their primary difficulty with (+)MI trials over time. 
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Figure 13 - Subject Accuracy by BCI Output Behavior. Trials separated and tabulated for each behavioral class, as 
per Target Categories (TC 1-5) and described in text.  For each subject, the accuracy is shown for each behavioral 
type: Motor Imagery Only (+)/(-), Keyboard only (Right/Left), and, the mixed case, Motor Imagery + Keyboard (corner 
targets, TC2/TC4).  As seen in Figure 3, overall subjects had difficulty with consistent hit of keyboard R/L targets, 
possibly due to unconstrained y-axis movement of cursor during targets. Overall, all subject were best at Keyboard 
only targets, as would be expected, and surprisingly better at the combined output than with motor imagery alone. 

Thus, it seems important to further separate performance based on the output behavior type.  

In Figure 13, each subjects’ accuracy is separated into the BCI control or output behaviors required 

for control.  It is immediately apparent, that subject 4 did extremely poorly for simple Key (R/L) only 

trials, barely hitting 20% of these trials.  Whether this might be due to the cursor being unconstrained 

along the y-axis or a lack of motor output, is further examined below.  Overall, this focus on behavioral 

output indicates that on average, subjects were better able to output MI and Key presses 

concurrently than modulate MI alone.   

8.3.2 High Gamma Activation at the Control Electrode 
To better understand the variance in behavioral performance and examine the nature of each 

subject’s control during concurrent manipulation, it is important to examine the HG behavior in the 

controller electrode.  The electrode selected for control for each subject can be found in Table 2 and 

identified spatially in Figure 10-a.  Ideally, performance changes over time would be reflected to some 

extent in the HG activation patterns at the control electrode. The trial by trial HG activation for each 

control electrode is plotted for each target and subject and shown in relative spatial orientation in 
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Figure 14.  Additionally, a radial plot reflecting each subject’s target or ‘directional’ accuracy is shown.  

As described before, recordings from all channels were common-average re-referenced over the 

whole grid. Channel data were then band pass filtered for the high-gamma (HG) range (70-200 Hz) 

using a fourth-order Butterworth filter. A time variant estimate of the HG-band power was calculated 

from the square of the magnitude of the Hilbert Transform. Data were then log normalized and 

further z-normalized with respect to the rest (behaviorally quiescent) periods. For each target type, 

this HG activity is visualized over time and stacked vertically downwards for each trial from beginning 

to end.  Task states from cue, to feedback, and quiescence (inter-trial intervals) are marked.  

Corresponding BCI control/output behaviors are marked for each set accordingly.  Additionally, in 

Figure 15, the mean z-scored high gamma (zHG) activation at the control electrode over time is 

plotted for hits vs misses for each behavior type (MI only, Key only, MI+Key) with variance in the 

signals shown with the standard error of the mean in relief.   

(+)MI only:  For TC1, Subject 1’s performance is initially less than 50%.  However, with practice 

the subject learns to modulate their high gamma signal, seen as increase in zHG intensity post 

feedback start in the (+) MI-only plot.  This behavior is also seen with Subject 3 and 4, both of whom 

go from roughly 50% accuracy to near 100% in this category.  For all three subjects the peak +zHG 

activation is shortly after feedback starts.  This quick increase, as seen in the mean activation plots 

allow for a high velocity in vertical cursor movement followed by a tapering of the zHG to baseline 

allowing for dwell behavior with additional peaks of zHG to course correct and diminish aberrant 

cursor movement.  For Subjects 2 and 4, however, their Trial by Trial HG activation pattern shows no 

discernable modulations initially, though the upwards slope in the mean activation for S5’s miss trials 

as well as the brief peaking HG during run 2 indicates that control may have been developing as 

performance correspondingly improved, though these gains were lost by the last run.  Subject 2, 

however, may have never figured out an ideal MI strategy. 

(-)MI only:  The improvements Subject 1 showed in (+)MI control are not reflected for the (-

)MI only case, as activation is chaotic overtime and in fact, the HG activation for TC5 is the inverse of 

TC1, with the end performance dropping from above 50% to around 20%.  Conversely, subject 2, who 

demonstrated poor (+) MI control show significant improvement overtime, going from 0% in the 

initial run to near 100% before settling at around 80%.  The trial by trial raster again reflects this, with 

HG suppression or quiescence seen as deep blue around 3-4 seconds post cue that is consistent across 
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Figure 14 - Trial by Trial raster of HG response at Control Electrode. As described, ECoG recordings were common-
average re-referenced over the whole grid. Channel data were band pass filtered for the control high-gamma (HG) 
range (70-90Hz) using a fourth-order Butterworth filter. A time variant estimate of the HG-band power was 
calculated from the square of the magnitude of the Hilbert Transform. Data were then log normalized and further z-
normalized with respect to the rest (behaviorally quiescent) periods. Heat scale for z-scored, log(HG) activity is -1.5 
to 1.5 z-scores.  This HG activation for each BCI trial, concatenated top to bottom, is plotted as an image for each 
target Type, arranged in task-relative spatial orientation.  Time axis starts with target presentation at ‘-2’ followed 
by cursor feedback starting at ‘0’ and ending at ‘6’. Each target trial raster is labelled with the relevant output 
behavior (e.g. (+)MI + R-Key for up-right or +x|+y targets). At the center of each set, the ‘directional’ accuracy, an 
analog of target accuracy is shown for comparison with performance.  Specific discussion of each subject’s HG 
response over time and trials is further elaborated upon in Results and Discussion. 
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trials after the initial few, ending with peaking zHG in late trials interspersed with this reduction.  

Note, to affect velocity control, HG need not be maintained for long durations, rather the change in 

activation should be large enough to counter baseline activity in the previous 500ms.  Activation 

patterns for subject 3, are the reverse of S2, with ideal behavior and stark lower peak zHG around 4 

seconds initially, which eventually becomes more similar to the activation matters for (+)MI.  

Examining the traces and ISE, however, suggest that there were many near misses in later trials, with 

the possible reversing +HG bump making it difficult for the subject to maintain velocity control in this 

direction.  For subjects 4 and 5, however, both seem to have peaks of increased high gamma activity 

preceding the feedback cue (seen also in mean activation plots)  with subject 5 apparently eventually 

figuring out a strategy for (-)MI control reflected also in periodic –zHG activity for later trials. 

Key only:  While Subject 4 had clearly the worst performance for TC3 targets along the x axis, 

it is not immediately clear why this might be the case.  The mean activation shows very little activity 

change from rest for the zHG for either hit or miss trials.  Accordingly, the trial by trial HG activation 

shows very little change from early to late trials with very different, almost mirror image, patterns for 

right and left key presses with a peak HG increase toward the end of the trials for leftward targets 

and quiescence in zHG near feedback end in rightward trials.  Comparatively, the response for subject 

3 was markedly consistent across trials for right and left with a huge (>0.5 score) +zHG peak after 

feedback, corresponding in time to the beginning of the continuous key press behavior, with limited 

additional spiking later in the trials.  Subject 5’s activation shows a similar kickoff peak post feedback, 

though with minor attenuations throughout feedback period that seem to increase for later trials 

especially in the miss cases.   

(+)MI+Key: Though, the initial testing suggested any directional preferences for key presses 

should be negligible, the directional accuracy suggests that each subject had at the least a 

performance bias within TC2 for these trials, though the trial numbers are not enough to determine 

real significance.  While S1 and S3 had very similar activation patterns for the (+)MI (TC1) case, here 

they show quite different patterns.  Activation response for S1 shows a series of peaking +zHG 

periods, increasing with later trials.  For S3, however, there are two bolus of +zHG activation much 

like for TC1 that distinctly coalesce around feedback cue for later trials.  This behavior is also seen in 

S4 for the right key, TC2 trials and in later trials across TC2 for S2 and S4 as well.  These changes in 
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activation pattern are reflected in the performance increases for these subjects as well as well as the 

peak behavior in the mean activation plots. 

 

Figure 15 - Mean HG Activation at Control Electrode. Mean HG activity at the controller electrode is shown for each 
trial across all output behaviors.  Relevant task cues are marked in time on each plot. For each meaned HG signal, 
the standard error of the mean is also plot in dotted relief. Subject specific trends are further discussed in text. a) 
For each subject, the mean HG activity at the controller electrode during BCI output is plotted for all MI-only trials, 
separated into hits vs. misses. b) For each subject, the mean HG activity at the controller electrode during BCI output 
is plotted for all Key-only trials, separated into hits vs. misses. c) For each subject, the mean HG activity at the 
controller electrode during BCI output is plotted for all Concurrent (MI+Key) trials, separated into hits vs. misses. 
 

(-)MI+Key: The kickoff peak +zHG post feedback cue seen previously for key presses in the 

solo and combined states for Subject 3 are again seen for TC4 targets, however, with a deep 

quiescence in the following second.  Overall, subject 3 maintains almost 100% hit rate for these 

targets, throughout with a high consistency in activation patterns throughout later trials.  

Interestingly, while subject 4’s performance would indicate little control for this combined output 

behavior, the HG activation patterns closely match those of S3, with the mean z-scored HG activation 

over time matching in progression (Figure 15), but being a fraction of the intensity.  Conversely, for 

Subjects 2 and 5, whose performance for TC4 targets are similar, the mean activation patterns show 

no significant difference and very little variance between hit or miss when combined with the overall 

concurrent behavior though the trial by trial activation shows distinct periodic +zHG peaks over time 

showing very little modulation with training.  Finally, subject one, has the most marked difference in 

HG activation over time, with marked +zHG periods during early trials with marked –zHG for late trials 



www.manaraa.com

81 

 

as would have been expected, though not seen, for TC5 trials of this subject.  The mean HG activation 

over time is also of note, with miss trials showing a wide variance compared to hit for the concurrent 

control behavior.  

8.3.3 Task-Relevant Distributed Cortical Activity 
The benefit of using ECoG as the BCI modality, is that task-relevant focal changes (as per the 

correlated HG response) across distributed cortical areas can be examined in addition to just the 

activation patterns over time for the control electrode.  Though anatomical landmarks in the cortical 

reconstructions provide one avenue for identifying thematically relevant electrodes, we decided to 

be more rigorous and test all electrodes for significant differences between all the BCI behavioral 

classes: MI only versus Key only, Key versus the concurrent MI+Key, and MI only versus MI+Key.  

Additionally, electrodes were compared for the hit and miss conditions for each output behavior.  As 

all the data had been previously band-passed, z-scored, and then meaned with an assumed normal 

distribution across all channels, we chose to do a simple paired two-tailed Student’s t-test for 

significance testing, with degrees of freedom corresponding to the channel observation space. (A 

Mann-Whitney U test (Wilcoxon rank-sum) was also considered for comparison across the processed 

log(HG) values).  To increase selectivity and rigor, we initially chose a cutoff value of ɑ = 0.05/df 

(where df is the number of channels recorded for that subject).  Only three electrodes passed this 

level across all five subjects and are seen in Table 3 below along with the specific ɑ values for each 

subject.  All electrodes show up for MI related class comparisons.   

A second pass significance testing was also done for all cases, but with a lower statistical 

threshold with an overall ɑ = 0.01.  As expected, with the more relaxed limit, quite a number more 

electrodes were identified as behavior significant. This was especially true in the case of hits versus 

misses for targets requiring concurrent MI+Key output.  A sampling of these can be seen plotted in 

regards to the respective cortical implants in Figure 16.  The calculated t-test statistic for each 

electrode is plotted, with those larger statistical differences indicated with a larger electrode radius. 

The heat-map scale for these plots is derived from the respective calculated statistical bounds of each 

class.  The mean-HG activation (z-scored as before) is then plotted as before for each behavior type.  

The electrodes passing the initial screening are shown in Figure 17.  A sampling of electrodes that 

showed significance across multiples classes for each subject, highlighted in italics in Table 3,  are 

additionally plotted in Figure 18. Like before, mean HG activation is plotted for each behavioral class. 
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I. Electrodes of Interest as per Significance Testing by Behavior (ɑ = 0.05/df) 

Subject (ɑ) MI vs Key 
MI vs 

MI+Key 

Key vs. 

MI+Key 

MI: hit vs. 

miss 

Key: hit 

vs. miss 

MI+Key: hit 

vs. miss 

S1 (ɑ = 

0.000781) 
-- -- -- -- -- -- 

S2 (ɑ = 

0.000781) 
-- -- -- 51 -- -- 

S3 (ɑ = 

0.000781) 
-- 54 -- -- -- -- 

S4 (ɑ = 

0.001042) 
-- -- -- -- -- 28 

S5 (ɑ = 

0.000806) 
-- -- -- -- -- -- 

       

II. Electrodes of Interest as per Significance Testing by Behavior (ɑ = 0.01) 

Subject (ɑ) MI vs Key 
MI vs 

MI+Key 

Key vs. 

MI+Key 

MI: hit vs. 

miss 

Key: hit 

vs. miss 

MI+Key: hit 

vs. miss 

S1 (ɑ = 0.01) -- 47 -- 10 -- 
12, 15, 48, 55, 

64 

S2 (ɑ = 0.01) 
5, 27, 36, 

56 

5, 7, 22, 41, 

55 
-- 

31, 32, 39, 40, 

49, 50, 51 
-- 2, 16, 39 

S3 (ɑ = 0.01) 54 9, 46, 54 -- -- -- -- 

S4 (ɑ = 0.01) 31 9, 21, 28, 46 31, 47 -- 31 

6, 8, 12, 14, 

20, 21, 23, 27, 

28, 29, 30, 36 

S5 (ɑ = 0.01) -- -- 40 -- -- 8, 19 

Table 3 - Non-controller, task-relevant electrodes of interest.  Tabulated herein, for each subject, are all 
electrodes deemed significant based on two-tailed Student’s t-test comparisons of output behaviors and classes 
designated in table header.  I) To limit extraneously active electrodes, the initial first pass analysis used a stringent 
ɑ cutoff value of 0.05/df where df was the observational degrees of freedom or, for this purpose, the utilized 
channel space of each recording.  At this level, only 3 electrodes were deemed significant, in bold.  II) A second 
pass was performed with a more relaxed ɑ of 0.01, still under the theoretical 0.05 limit, but orders of magnitude 
higher than before.  To underscore task-relevant electrodes, analysis was focused on any that appeared in multiple 
class comparisons, shown in italics (e.g. S4 e21). 

For subject two, channel 51 showed significance for hits versus miss in the MI case.  This 

channel, as seen in Figure 16-a, is located along a superior parietal electrode on a secondary 2x8 grid 

array.  Despite being indicated as related to motor imagery success, for all behaviors, there are two 
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HG peaks of note of equivalent z-score across all classes (see Figure 17-a).  The first comes 

immediately after the presentation of target, marked in Figure 18.  The second is with cursor onset, 

rising from cue to peak.  It is hard to say whether this is correlated to target location or simply visual 

cue, but for this activation is more than halved for unsuccessful MI trials.  

The significant effect for electrode 54 for subject 3, appears to be driven largely by pretrial or 

inter-trial interval HG activity, shown in Figure 17-b.  For missed trials in the concurrent case, this 

electrode, lying roughly along central sulcus and possibly in a pre-motor area, shows an almost 

standard deviation of activity difference in the supposedly quiescent period prior to trial start, and 

possibly could be an indicator of other underlying behavior leading to the errors to come. 

 

Figure 16 - Example Cortical plots for Significant Electrodes.  As outlined in the Results, significant electrodes in 
each BCI behavior class were vizualized on the cortical surfaces for each subject.  For each electrode, the test-statistic 
is plotted as per the corresponding class analysis.  Heatmap color limits are merely the bounds of this measure across 
the grid.  Electrodes meeting the parameter constraint are plotted with an exaggerated electrode radius.  This allows 
for a general cortical region comparison with the spatial layout of the active electrodes.  While this is a limited view 
of all cortical activity, it provides a focused window in which to examine distributed cortical changes during BCI 
interaction for each subject.  a) Plots are shown for the classes with electrodes of interest as per I-ɑ in Table 2. a) 
Example plots are shown for a sample of classes for each subject with electrodes of interest as per II-ɑ in Table 2. 
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Figure 17 - Mean HG Activation for First Pass Electrodes of Interest. Mean HG activity at the three electrodes 
selected from Table 2-I are shown for each trial across all output behaviors.  Relevant task cues are marked in time 
on each plot. For each mean HG signal, the standard error of the mean is also plot in dotted relief. Subject specific 
trends are further discussed in text. a) S2 Electrode 51, located along the parietal array as seen in Figure 16, shows 
marked activity changes in relation to cue triggers, though it was selected during the MI: hit vs. miss class 
comparison.  b) Electrode 54 for S3, located along the central sulcus and selected during the MI vs. MI+Key 
comparison, shows a higher and protracted mean HG response from Feedback start for successful Concurrent trials 
as compared to successful MI-only activity. This is mirrored by the Key-only related HG activity. c) Posteriorly 
located electrode 28 in S4 shows a marked difference in miss vs hit for the concurrent BCI output pre and post 
feedback cue.  This activation pattern maintains itself until late in the trials at which point, HG activation for the hit 
cases inverses. 

The last electrode for subject 4, lies along posterior parietal areas and primarily reflects 

difference in the success and failure for the concurrent MI+Key cases.  Here, the variances of the HG 

activity, let alone the mean activity, post target presentation and feedback start are mostly separated 

from each other.  As these areas can be related to attention and movement planning, these 

differences might be in response to perceived error or unexpected state aberrance.  

Five electrodes were selected from among the second pass group.  The first, for subject 1, is 

electrode 10 (Figure 18-a), lying along the same Left Parietal Strip as the original control electrode 

and indicated in relation to motor imagery success.  Despite being somewhat anterior and superior 

to the control electrode, it shows very similar differences in the HG activation related to success for 

all three behavior classes as originally seen at the control electrode.  For MI only, the hit versus miss 

difference is clearly tuned to the feedback period.  This holds for the key case as well, though the 

hit/miss activation pattern is inverted.  It is possible then, that this activation is in response to or tied 

to the MI onset, as the primary failure type for key presses for subject 1 was due to HG activation 
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that pushed the cursor vertically out of target bounds, though the cursor x-coordinates were 

appropriate for success.  This is again seen for the MI+Key miss vs. hits and possibly arises from TC4 

misses, where again MI activation prevented proper downwards cursor movements.   

 

Figure 18 - Mean HG Activation for Second Pass electrodes of interest. Mean HG activity a sample of electrodes 
selected from Table 2-II are shown for each trial across all output behaviors as in figures 6 and 8.  Relevant task 
cues are marked in time on each plot. For each mean HG signal, the standard error of the mean is also plot in 
dotted relief. Subject specific trends are further discussed in text. a) Electrode 10 for subject 1 showed significance 
during MI hit vs. miss. b) For subject 2, electrode 39 was indicated for success vs. failure for both MI and MI+Key.  
c) Electrode 8, along temporal lobe for subject 5, was indicated for MI+Key behaviors, but shows marked 
differences for Key only miss. d) Electrode 21 for subject 4 was indicated for multiple MI+Key classes.  e) Electrode 
31 for subject 4 was the only electrode across both passes that was indicated for a Key only behavior. 
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For subject 5, we looked more closely at electrode 8 (Figure 18-c) which lies at the end of the 

superior temporal gyrus.  Though not active at all during motor movement as per the screening, it is 

indicated for significance during the success and failure for MI+Key.  While the difference in the 

means of this behavior class are clear with a lower aggregate response in the miss case, the activation 

pattern for the Key only hit versus miss classes, is far more pronounced.  The large positive HG 

activation starting from target onset and ending exactly at end of feedback with a peak almost 2 

standard deviations (as per the z-score) away from baseline would seem like a fluke but are seen in 

neighboring electrodes as well specifically for the key only miss case.  This behavior was also seen in 

the Keyboard miss activation plot for the control electrode. 

Finally, electrode 31 for subject 4 was the only electrode across both passes that pinged for 

significance for the Key only success versus fail.  This electrode was barely active during motor activity 

and is thus unlikely to be related to any pure motor related behaviors. However, as seen in Figure 18-

e below, there is a distinct peak at the end of the trial aligning closely in time with the rare cursor 

contact with target along the horizontal axis.  This peak does not arise for any other success behavior 

nor does it arise for any general key press in the other mixed behaviors.  Additionally, as seen in Figure 

18-d, electrode 21 was indicated in multiple MI+Key classes, but does not show high degree of 

significant difference between the behaviors, though there is a convergence between Key hit and 

MI+Key miss.   

8.3.4 Distributed Cortical Changes over time. 
An attempt was made to also characterize distributed cortical changes in regards to learning 

or ‘training’ for each subject as per each output behavior class.  While cortical response changes 

shown in Figure 19 above are quite small, a similar effect is seen for all subjects in regards to a slight 

decrease in frontal activity, where covered by grid electrodes.  In addition, subject 3 actually shows a 

marked increase in cortical activity around the control electrode, especially for the +MI output.  In 

addition subjects 1 and 5 show increase activity along the temporal lobe in keeping with previously 

shown cortical changes during BCI learning. (Wander et al., 2013)  However, at less than 0.5 z-score, 

none of these are strong enough effects to claim this trend would hold up with continued training 

and performance improvements. 
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Figure 19 - Difference in HG Activation for late vs. early trials. Cortical Changes Mean HG differences mapped 
across cortical areas covered by grid electrodes for late vs early trials (pre-trained vs. post-trained states) for each 
activity (target category) type. HG response is amplified at many cortical areas, with pronounced magnification 
around the control electrode for (+) MI as seen for subject 3. Otherwise, a slight decrease in activity is seen as light 
green shades for most other activities.  

8.4 Discussion 
In our experiment, subjects performed a BCI task which required the bimanual concurrent 

and independent use of BCI control with overt finger movements of the opposite hand. We have 

demonstrated here that subjects were able to perform the concurrent BCI control task, though 

significant interference did occur from activations from the opposing hand.  However, rather than 

the ipsilateral finger movements (key presses) being the primary source of noise, it was often the 

contralaterally driven HG activation that impeded success for Overt Motor only trials.  Nevertheless, 

subjects were able to consistently coordinate control simultaneously to hit ‘corner’ targets.  This 

should not be surprising as, much like with traditional bimanual feedback and rehabilitation 

tasks(Peper et al., 2013), the necessity for coordination may engender improved control especially if 

the motor cortex is indeed optimized for bimanual activity (Ganguly et al., 2009; Kadivar et al., 2011).  

While bimanual motor behavior, i.e., reach and grasps, limb kinematics, etc., have been studied quite 
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extensively for both human and animal models, to our knowledge there has yet to be a demonstration 

of concurrent bimanual BCI control and movement execution, especially utilizing a semi-invasive 

interface model like ECoG. In the non-invasive BCI control setting, some cases, including our own, 

have been reported where the concurrent production of movement execution has not significantly 

disrupted the performance of EEG-based BCIs (Cheung et al., 2012; Leeb et al., 2013).  However, 

incongruous movements outside the bimanual setting has been shown to have a differing response 

profile as compared to traditional EEG-BCI activity (Seeber et al., 2015).  Nevertheless, as mentioned 

previously, concurrent control has, however, been reported in two non-human primate studies using 

intracortical single-unit recordings. In the first (Orsborn et al., 2014), one monkey performed an 

isometric force task, pressing a force plate to match a desired value, while performing a previously 

over-trained center-out 2D BCI control task. Initially, the addition of the concurrent control 

significantly decreased BCI performance. An important note, however, is that unlike our task, in which 

the output behaviors were meant to be congruous and actively coordinated for success, the monkey’s 

secondary behavior had no relation to BMI success and was an isometric force hold and not a 

movement coordination process. Following in the footsteps of this first primate study, (Milovanovic 

et al., 2015) one more monkey performed a target pursuit task, now utilizing an isometric wrist 

torqueing behavior on a lever as the controller for one dimension of cursor movement with the BCI 

behavior controlling the second dimension. Like with our subjects, though with significantly more 

training or experimental time and food reward, the monkey was able to perform the task and gain 

concurrent control.  This then extrapolates quite nicely to our case, except that instead of a held wrist 

torque, our subjects used continuous key presses.  

8.5 Bimanual Considerations for ECoG BCI 
Here, we have demonstrated the potential for human subjects to control BCI devices 

concurrently and independently to the execution of natural movements.  Though not with the 

significance or degree as that of the single unit studies mentioned in previous chapters, our short-

term results with these five subjects suggests that the brain is capable of dissociating specific motor 

related responses from the behavior to which they were initially correlated specifically in order to 

represent the activity of a newly acquired effector such as a BCI.  As previously shown for motor 

movement as well as simple 1-D cursor BCIs (Tim Blakely et al. 2009; Leuthardt, Miller, et al. 2006 & 

2007), the use of specific feedback during the control period enhances the “self-control of brain 
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activity.”   However, the difficulty in the task combined with transient distractions in the experimental 

environment often lead subjects to not effect good “BCI Control”, in that they could modulate their 

signal to a point, but were unable to excel at the task (see accuracy vs. precision and related decreases 

over time).  Thus, there is an immediate concern of the actual applicability to an individual with an 

existing deficit.  If the task is too hard to learn, might the performance of a subject obfuscate the 

general feasibility or utility of this type of control schema and might dexterous bimanual coordination 

be too lofty of a goal to achieve with current ECoG-based BCIs.  To that extent, the following chapter 

attempts to examine this very issue and gets at the heart of our motivation. 
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Chapter 9: BCI for Rehabilitation – A Case of Stroke. 
 

As mentioned throughout this document, much of the research on brain-computer interfaces 

(BCIs) has focused on developing assistive brain-controlled devices for patients with severe 

neuromuscular disorders, such as amyotrophic lateral sclerosis (ALS), brain-stem stroke, and spinal 

cord injury, all of which result in degradation of volitional motor abilities (Curran and Stokes, 2003). 

Traditionally, BCI technologies have been applied to cases in which there is little or no motor ability.  

However, there is a much larger population of patients that retain some residual motor function, 

even with degradation, who could benefit significantly from BCIs (Buma et al., 2010). In addition, 

looking further into the future, can BCIs also be used to augment a healthy-functioning motor 

system? For example, can individuals with deficit use BCIs simultaneously with overt coordinated 

motor activity, e.g., for bimanual control? Additionally, how do the unique cortical networks adapt in 

such a hybrid BCI-manual control? 

Here we show that a subject with lifelong hemiparesis implanted with electrocorticographic 

(ECoG) electrodes can learn to perform a 2-D BCI center-out cursor task in which one dimension of 

control is modulated by motor imagery-related ECoG activity and the other dimension is controlled 

by overt natural movement.  We explore the effects of confounding ipsilateral and contralateral 

neural activation due to natural movements on BCI control. We also investigate task-related 

adaptation across cortical areas in the hybrid BCI-manual control task and its relationship with overt 

motor behavior.    

9.1 Experimental Setup 

9.1.1 Subject Zero: A Case of Hemiparesis 
Much like the subjects from Chapter 7, this patient with intractable epilepsy was implanted 

with platinum subdural ECoG electrodes for the purpose of seizure focus localization at the 

Harborview Medical Center. Electrodes were placed by medical staff over the right hemisphere as 

per the clinical indication. 8x8 electrode grid was made of 3mm diameter platinum pads spaced at 

1cm center-to-center and embedded in silastic (AdTech). Before experimentation, all protocols were 

explained verbally and summarized in writing.  The patient provided written informed consent to 

participate as a subject for research activity during clinical monitoring. All experiments and 
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procedures performed were approved by the Institutional Review Board at the University of 

Washington.  

 

Figure 20 - ECoG Implant and Initial Screening. (a) MRI axial slice view (110/187) of the subject's brain, reflected 
about the y-axis from original clinical view, indicating possible porencephalic cyst corresponding to perinatal 
infarction of the right MCA. (b) Cortical reconstruction of subject's brain with ECoG implant generated from pre/post-
op MRI and CT scans (Wander et al., 2013). The ECoG electrodes consist of 3mm diameter platinum pads spaced at 
1cm center-to-center and embedded in silastic (AdTech). Subject was implanted with one 8x8 grid over the central 
sulcus, one 1x8 strip over the frontal lobe, and one 2x8 strip along the interior. Only the 8x8 grid electrodes were 
used for experimental purposes. Subject was visually cued to move their left hand, wrist, tongue, and shoulder at 3 
second intervals. High Gamma (HG) power (70-100Hz) at each electrode was examined for significant differences 
between activity and rest conditions. The colored circles show the average responses for left hand movements, 
which are contralateral to grid. The electrode labeled 48 (in a putative hand motor region) had the highest 
significance and was chosen for use in BCI control. Similar screening was done with motor imagery as well as with 
movements ipsilateral to the implanted hemisphere. (c) & (d) Contralateral vs. ipsilateral time-frequency analysis 
for z-scored HG power responses mapped across a set of grid electrodes. The HG response over time supports initial 
selection of electrode 48 (highlighted in light red).  Most electrodes are quiescent to ipsilateral hand movement.  
There is activity at electrode 48 for ipsilateraleral movement but this activity is muted and somewhat delayed 
compared to the contralateral case. 
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Relative placement of the implant can be seen in Figure 20-b. Subject was an 18-year-old 

right-handed male with lifelong hemiparesis due to a perinatal infarct involving the right MCA.  

Imaging was suggestive of a porencephalic cyst (Figure 20-a). Visual fields were essentially normal. 

Facial symmetry and sensation also presented as normal, and tongue was midline. Motor 

examination showed, on the right, normal tone, bulk, strength, and dexterity in the upper and lower 

extremity, while on the left, subject had moderate spastic hemiparesis of the upper and lower 

extremity.  Subject could move the left wrist with very limited clawlike grasping ability of the hand 

(due in part to spasticity) and showed some mirrored movements on the contralateral side indicating 

possible conjoinment or entrainment of motor hand behavior.  Subject could not move left side limb 

independent of the right, and also demonstrated mirrored movement of left limb when moving right 

side limb. Subject was able to lift the arm and ambulated with a hemiparetic gait. Sensory exam 

revealed mild decrease in fine touch and, perhaps, temperature on the left side.  Subject was 

nevertheless able to identify coins by touch. Despite some difficulties and no prior experience, subject 

was eager and engaged, frequently asking questions and providing observations on experimental 

procedure throughout recording activities.  

9.1.2 Recordings 
Experimental recordings were taken at the patient's bedside without interrupting the primary 

clinical recordings. Data was acquired at 1200Hz using four synchronized sixteen-channel g.USBamps 

(GugerTec) connected to a high-performance Sager computer. Data was anonymized in accordance 

with Health Insurance Portability and Accountability Act (HIPAA). Cortical potentials were referenced 

against a scalp electrode, digitized and processed using the BCI2000 (Schalk et al., 2004) software 

suite. 

9.1.3 Data Processing 
All channels recorded from the electrocorticographic grid were common average re-

referenced by subtracting the average signal recorded at all electrodes. This was done in an attempt 

to remove any common noise introduced by activity recorded at the scalp reference electrode due 

to electrical noise in the hospital environment. The re-referenced signals were band pass filtered for 

the high-gamma (HG) band (70-200 Hz) using a fourth-order Butterworth filter. The square of the 

magnitude of the Hilbert Transform was then used to calculate a time-variant estimate of band-

power. Data was then log transformed to obtain approximately normally distributed data for proper 
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statistical analyses. To account for differences between recording sessions, this log-power estimate 

was further z-normalized with respect to the rest (behaviorally quiescent) periods for each channel 

and session. This signal is referred to in the paper as HG activation. 

9.1.4 Screening Process 
Before attempting on-line control, subject performed an overt motor screening exercise, in 

addition to clinical motor evaluation. Typically, subjects are visually prompted to move their hand or 

tongue for 3s with a 3s rest period in between each movement. This is repeated about 20 times. 

Subjects then repeat the task, imagining the prompted movement without executing an overt 

motion. In our case, the subject was also cued to attempt to move their left wrist and shoulder in 

addition to hand and tongue. HG activation at each electrode was examined for significant differences 

between activity and rest conditions (Figure 20).  The electrode with the highest significance in a 

putative hand motor region was then chosen as a candidate for use in BCI control. 

9.1.5 BCI Training 
Initial BCI training was done on a 1-D center out cursor task using overt hand movements to 

control the vertical movement of the cursor. Control of the cursor was derived from HG activation at 

a single electrode during movement of the left wrist/hand. Subject reported difficulty in movements 

and struggled greatly with the task with minimal successful trials. Clinical staff also frequently 

interrupted to check on subject. Separate overt training was abandoned in favor of directly training 

with motor imagery in the primary task. 

9.1.6 Concurrent BCI Center-out Cursor Task 
Subject performed a 2-D center-out cursor dwell BCI task using left hand motor imagery to 

control the vertical movement of the cursor and right hand keyboard presses to control horizontal 

movement (Figure 21-a). ‘Brain control’ of the cursor was driven by spectral power changes in HG at 

a single electrode during motor imagery. Eight targets distributed radially were presented at random 

(Figure 21-b). The patient was instructed to imagine moving his left hand (contralateral with respect 

to hemispheric coverage) when presented with targets in the upper half of the screen (up targets). 

When presented with targets in the bottom half of the screen (down targets), they were instructed 

to rest or not engage in motor imagery. 

Due to the use of a single hand for right & left key presses, targets can be re-categorized by 

activity type where T1 requires purely left hand motor imagery (LMI), T2 requires concurrent 
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activation of LMI and right-hand (RH) movements, T3 utilizes only RH key presses, T4 requires 

relaxing, or release, of LMI with concurrent RH key presses, and, finally, T5 requires overall rest 

(relaxation of LMI) to achieve downwards movement towards the desired target.  The cursor’s vertical 

velocity (speed and direction) was updated every 40ms and driven by changes in HG activity at the 

control electrode as calculated by an autoregressive filter using the previous 500ms of recorded data. 

 

Figure 21 - Center-Out and Cursor Dwell BCI Task. (a) Sequence of steps in a trial. Subject performed a 2-D center-
out cursor dwell BCI task using left hand motor imagery (LMI) to control the vertical movement of the cursor and 
keyboard presses with the right hand (RH) to control horizontal movement (b). ‘Brain control’ of vertical cursor 
movement was driven by HG spectral power changes of a single electrode (electrode 48) during modulation of motor 
imagery.  Each trial started with the target being cued in one of the 8 locations (see (d)). Two seconds later, the 
feedback period began with cursor at the center of the screen. The subject was given control for six seconds, 
followed by a blanking of the screen. The inter-trial interval was one second with some jitter. (c) The task window 
with a running score in the top right corner based on cursor distance to the center of the target after contact with 
target. Score was calculated through each run to provide subject with a running motivating tally. Task difficulty could 
be modulated by decreasing target radius size. (d) Targets shown relative to initial cursor position and re-categorized 
by 'height' from 1 to 5. 

Horizontal movement of the cursor was mapped to overt presses of the right or left arrows keys by 

the right hand.  Consistent motor activation was insured by imposing "gravity" on the cursor towards 

the center in the horizontal axis, requiring the subject to continuously press a key to keep the cursor 
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moving in the desired direction. In the horizontal direction, the cursor x-position was updated at 

30Hz; with each update, the cursor position moved (|right - left key presses| * key press distance) – 

gravity distance, where key press distance is 1.39% and gravity reversal distance is 0.0005% of the 

total workspace 0-1 (AU). To reach a diagonal target, subject would need to exhibit and maintain 

concurrent control. To aid with subject engagement, a running score was provided based upon 

targets hit and cursor distance from the center of the target. Task difficulty could be adjusted by 

changing the diameter of each target based on a difficulty slider (1 to 5, 1 being smallest diameter 

and highest difficulty) Duration of recording sessions was dictated by the subject's willingness and 

capability to participate at the time of experimentation and as per clinical constraints. 

9.2 Results 
The subject volunteered in multiple experimental recording sessions over four days. The 

initial session consisted of a series of basic functional screening tasks in which the subject was visually 

cued to perform gross motor behaviors or imagined motor activities.  As indicated, due to a perinatal 

infarction in the right middle cerebral artery (MCA), the subject had lifelong hemiparesis which 

drastically impeded motor function on his left side. Functional screening of residual motor ability 

helped determine electrodes that exhibited statistically significant increase in HG activity during 

modulation as compared to rest (Miller et al., 2010). Electrode 48 was selected based on the 

magnitude of the observed power change corresponding to wrist and hand movement as seen in 

Figure 20-b, previously.  

ECoG signals from electrode 48 were used in the initial BCI training for a 1-D vertical center-

out task, with vertical cursor velocity entrained in this case to the HG activation due to overt 

movement of the subject's left wrist and hand. The subject then performed a more complex 2-D 

concurrent BCI-movement task which did not require movement of the left side (Figure 21). The 

subject was randomly presented with one of 8 targets, evenly distributed radially about the center of 

the screen. To reach the target, the subject modulated HG activity to control the vertical velocity of 

the cursor while simultaneously using their right hand to press the right-arrow or left-arrow keys to 

control the horizontal position of the cursor. The subject was instructed to aim for the center of the 

target and dwell in place as much as possible. To motivate the subject, a discrete score window was 

shown, where the score was derived from the proximity of the cursor to target center. To ensure 
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continuous hand movement, a "gravity" element caused the cursor to drift towards the center along 

the horizontal axis, requiring continuous key presses to maintain horizontal movement or dwell.  

The subject's behavior throughout the task requires coordinated simultaneous control of left 

hand motor imagery (LMI) and right hand overt movement (RH) for pressing the keys. In the following 

discussion of the task, the eight targets are numbered as shown in Figure 21. Targets requiring only 

an increase of HG activity (LMI only) are referred to as "up targets" or target type T1; targets requiring 

only a decrease of HG activity (LMI only) are referred to as "down targets" or T5; targets requiring 

simultaneous increase of HG activity and overt keyboard presses (LMI+RH) are referred to as "up 

diagonals" or T2, while targets requiring simultaneous decrease of HG activity and overt keyboard 

presses (LMI+RH) are referred to as "down diagonals" or T4. Finally, targets requiring only horizontal 

cursor movement using the keyboard (RH only) are referred to as "horizontals" or T3. 

 

Figure 22 - Concurrent BCI Performance: Learning to Control the Cursor in 2D. (a) & (c) Cursor trajectories for each 
trial in the first (a) and last run (c). A marked improvement in cursor control can be seen in (c) compared to (a). (b) 
\& (d) Y coordinate position of cursor center (red line) relative to target center (blue line) for first (b) and last run 
(d). The integrated squared error (ISE) between these two positions shown at the bottom in black - note the dramatic 
reduction in ISE in the final run. 
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9.2.1 Behavioral Performance 
The subject performed 16 runs of 24-64 trials of the BCI task amounting to roughly 461 total 

BCI trials over 3 sessions split over 2 days. In all trials, the score was tallied and reported to the 

subject.  Initially, the subject was able to hit less than 50% of targets but with practice, the accuracy 

improved quickly to near 100%. Figure 22, above illustrates the overall performance improvement 

over time.  The subject’s marked improvement in cursor control over the course of the sessions can 

be seen by comparing the cursor traces from the first run to that of the very last run, as well as the 

plots of the vertical coordinate of the cursor in relation to the target center and boundaries in Figure 

22-b&d. The integrated square error (ISE) of the distance from cursor to center of target is greatly 

minimized in the final run.  

 

Figure 23 - Concurrent BCI Performance by Target. (a) Radial plot showing directional accuracy for each target type. 
The symmetry across left and right sides allows for collapsing the trials into 5 target categories. (b) Average accuracy 
for the five target categories across all runs (Session 1 left, Session 2 right). Note the improvement in performance 
for all target categories in Session 2. 

Overall, the subject was able to achieve high accuracies across all targets, significantly above 

chance, as illustrated in Figure 23. As expected, the subject was most successful in acquiring the 

keyboard only targets, the few misses being attributed to inexperience with the gravity element and 

fatigue towards the end of some trials. Targets across each of the conditions (LMI up, LMI+RH up, RH, 

LMI+RH down, LMI down) were achieved without any significant difference between the right and 

left key presses, validating our grouping of the left and right side targets into the classes T1-5.  Initially, 

the subject struggled with overall LMI modulation, as seen in Figure 23-b. By session 2, however, the 

only targets the subject occasionally struggled with were the LMI downwards ones (T4 & T5). 
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Accuracies for LMI upwards (T1 & T2) and LMI neutral (T3) peaked at 100%.  By day 2, all targets were 

attained with 100% accuracy, the score being the only determinant of difference between the states. 

9.2.2 Volitional Modulation of HG at Control Electrode. 
We hypothesized that the subject's improvement in performance over time should be 

reflected in the HG activation patterns at the control electrode 48. The trial-by-trial HG activation for 

this electrode over time for each trial is plotted for each target in Figure 24, as seen below. Individual 

trials are arranged vertically in time and radially by target.  Initially, for the upward targets requiring 

only LMI increase (T1), there is very minimal HG activation of any type across the entire feedback 

period (upper part of topmost plot in Figure 24).  However, after first 20 trials, HG activation increases 

from the time of the feedback cue for about 2 seconds (peaking around 1 sec) before decreasing to 

a lower level during the dwell period and returning to baseline during the inter-trial interval.   

For down targets (T5), by the end of session 1 and through session 2 and day 2, the subject 

has learned to decrease HG activation starting from the feedback cue but ending with HG increases 

during the dwell period at the end of the trials.  For RH trials (target type T3), a fast HG increase is 

seen after the feedback cue due to ipsilateral activation during right hand movements to move the 

cursor, followed by small HG increases through the dwell period associated with key presses due to 

the gravity element. 

Perhaps the most interesting question with regard to HG activation is how the subject is able 

to acquire the diagonal targets (T1 and T5) in the presence of ipsilateral HG activation due to RH key 

presses needed for diagonal movement. The answer can be seen in Figure 24 in the trial-by-trial plots 

for the diagonal targets: the subject has learned to modulate HG activation to a degree intermediate 

between the activations for vertical or horizontal movement. This is especially seen in the HG 

activations for day 2: compare, for example, HG activations on day 2 for downward diagonal cursor 

movements with activations for purely horizontal and downward cursor movements. 

The differences in HG activation patterns for successful ("hit") trials for the different target 

types after task learning can be seen more clearly in the average activation and standard error plots 

in Figure 25. A fast HG increase at the start of feedback for up (T1) targets and a suppression of HG 

activity for down (T5) targets are both consistent with previous 1-D ECoG studies. For the horizontal 

targets (T3) requiring RH key presses only, HG activation rises quickly but reaches a lower maximal 

amplitude than T1 and then drops, presumably after reaching the target.  For the diagonal targets 
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(T2 and T4) where the subject is attempting to exert concurrent control with LMI and RH motor 

behavior, the average HG activation is at an intermediate level between RH key press activation (T3) 

and activation for motor imagery (T1) or rest (T5). Interestingly, the average activations for all target 

types converge to approximately the same level towards the end of the trial when the subject is 

required to dwell the cursor inside the target. These results indicate a remarkable degree of control 

over HG activation by the subject in the stroke-affected hemisphere. 

 

Figure 24 - BCI Task Learning as revealed by Trial-by-Trial High Gamma (HG) Activation at the Control Electrode. In 
each of the 8 plots corresponding to the 8 possible targets, high gamma (HG) band (70-200 Hz) power changes over 
time (X axis) are plotted across trials (Y axis) from top (early trials) to bottom (late trials). For target T1 (requiring 
LMI only), the subject initially had little or no HG activation, leading to poor performance. Later trials show a 
progressive increase (red) in HG activation after the feedback cue, indicating purposeful modulation and leading to 
higher performance. A similar effect is seen of the T5 plot, where a progressive reduction (blue) in HG activation is 
seen, leading to better control of downward cursor movement. For the diagonal target types T2 and T4, HG activation 
increases over trials or decreases over trials as necessary to boost performance - note that in both cases, ipsilateral 
activation due to right hand key presses persists over the course of a trial. 



www.manaraa.com

100 

 

 

Figure 25 - Mean HG activity at the Control Electrode after BCI Task Learning. The average HG activation for each 
of the 5 target types T1-T5 is shown for day 2, with standard error plotted using dotted lines. All trials were successful 
or 'hit' trials. Note the expected increase versus suppression of HG activation for T1 targets (denoted by "(+)MI" for 
motor imagery) versus T5 targets ("(-)MI" for rest) respectively. For the T3 targets, which require only right hand key 
presses, we see ispilateral activation in the control electrode (green plot). For the diagonal targets (T2 and T4), the 
subject has learned to activate the control electrode at intermediate levels (see lines labeled (" (+/-)MI+Key”)) 
between key press activation and activation for motor imagery or rest. Note that for all target types, the activations 
converge to the same common level towards the end of the trial when the subject was required to dwell the cursor 
inside the target. 

9.2.3 Task Modulated Activity in Electrodes near the Control Electrode 
We found that electrodes close to the control electrode exhibited similar activation patterns 

as the control electrode. Specifically, electrodes 64, 56, 47, and 39, which fall along or immediately 

adjacent to the central sulcus, also showed task-related HG activation during the screening task (see 

Figure 20). The HG stratification by target type seen at the control electrode 48 (Figure 25) are also 

exhibited by electrodes 64, 56, & 40, though the maximum amplitudes are lower and there is not as 

significant a difference between the T4 and T5 trials.  Channels 39, 47, & 55 exhibited a significant HG 

rise for T1 targets, but negligible HG suppression for T5 trials, with channels 47 and 55 even showing 

a slight increase in HG for all target classes starting from the beginning of feedback. Channel 32, a 

channel one electrode away from the control electrode, however, showed a very different activation 

pattern, with increased HG for all upward targets utilizing LMI behavior but not for any target 

category in which RH behavior is active. These results suggest that cortical networks can commandeer 
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the activities of large neuronal populations in regions near the control electrode to precisely shape 

the activity at the control electrode in order to increase the reliability of control during the BCI-task. 

 

Figure 26 - HG Activation for Electrodes surrounding Control.  HG activation across all target categories is averaged, 
respectively. Standard error for the z-normalized signals are calculated and plotted for channels immediately 
neighboring the control electrode. Plots are spatially laid out as per grid orientation seen in Figure 20. The general 
activation patterns seen at the control electrode, outlined in red, are seen in electrodes 64, 56, & 40. In these cases, 
there is some suppression of HG for T5 targets with a staggered level of activation for T1-T4 based upon the degree 
of LMI involvement. Channels 39, 47, & 55 indicate some level of HG activation for T1 cases, but demonstrate 
negligible HG suppression for T5 trials. In fact, there may be a general non-significant HG activation for all target 
trials. Channel 32 shows a very different activation pattern, with increased HG for all upward targets utilizing LMI 
behavior but not for any target category in which RH behavior is active. Unlike at the control channel, there is a 
directional separation of HG activation akin to a simpler 1-D cursor task. 
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9.2.4 Adaptation in non-motor cortical areas 
Additional examination of the HG activities at electrodes further from the control electrode 

also yielded some surprising results. Figure 27 shows the average HG activation and standard error 

across all target categories for four electrodes (57, 16, 1, 40) from putatively non-motor cortical areas.  

 

Figure 27 - Examples of HG Activation for other electrodes across cortical areas. Examples of HG Activation 

for non-Control electrodes across cortical areas. (a) Data for three non-control electrodes (circled) with highly 

similar activation patterns in different cortical areas (separated by column). A fourth electrode is provided as 

a counter-example of quiescence or lack of task-related activation. (b) The second row of panels shows the 

average HG activation (post learning) across all target categories, along with standard error. In the first three 

cases, there is an increased HG activation for all upward targets involving LMI behavior but low activations for 

other target categories in which RH behavior is active. (c) The third row shows plots of trial-by-trial HG 

activation for "up" targets (type T1), with earlier trials at the top of the plot. Note the remarkably similar 

activation patterns for the three different electrodes, with a notable increase in HG activation (red) in the later 

trials (from Session 2). (d) The fourth row of plots shows trial-by-trial HG activation for target type T2 trials; 

there is no significant HG activity until the later trials from Session 2. (e) The last row shows the trial-by-trial 

HG activation for "down" targets (type T5), with a notable increase only in day 2 late in trial time corresponding 

with the convergence of HG across target types in (b) during the dwell/hold phase. 
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These electrodes lie in frontal, occipital and temporal parts of the ECoG grid as seen in Figure 20. The 

final electrode is provided as contrast for a non-task relevant area (as per observed activation 

patterns). Despite being distant from each other, the first three electrodes exhibited an increased 

average HG activation for all upward targets utilizing LMI behavior but not for any target category in 

which RH behavior is active (second column of panels in Figure 27). This type of activation pattern 

was also seen in an electrode closer to the control electrode (channel 32) as mentioned above. These 

same electrodes from non-motor cortical areas also showed remarkably similar trial-by-trial HG 

activation patterns (last two columns of plots in Figure 27), suggesting that the subject's high 

performance in the concurrent BCI-motor task was achieved by an orchestration of distant neuronal 

populations across diverse cortical areas. 

9.2.5 Neural Correlates of Concurrent BCI Learning across Cortical Areas 
What changes occurs across cortical areas as the subject learns to control the concurrent BCI 

in the 2D cursor control task? We compared the z-scored mean HG activation for Day 1 versus Day 2 

trials, representing pre-learning and post-learning states, for all electrodes in the ECoG grid. Figure 

28 shows the difference in mean HG activation between pre- and post-learned states for each of the 

5 target types. Overall, the HG response was amplified across many cortical areas, with a pronounced 

increase by Day 2 at and near the control electrode as expected for upward targets. The decrease in 

activity (green) in some frontal areas for downward (T4 and T5) targets and the  additional HG 

increase in putative non-motor locations (as seen in Figure 27) appear to be consistent with previous 

results on ECoG BCI learning (Wander et al., 2013). 

9.3 Relevance and Related Work 
Significant work has been done on all levels of BCI systems to both improve functionality and 

understand the neural processes at work (Murphy et al., 2016).  Though a variety of cortical areas 

and structures have been examined for BCI control, these assume an intrinsic absence of functional 

motor ability (Daly et al., 2013).  The most successful examples from the Brain-Gate project 

(Jarosiewicz et al., 2013) or the impressive control of the Modular Prosthetic Limb (MPL) in Pittsburgh 

were performed by tetraplegic patients (Schwartz et al., 2006).  Even when multiple cortical areas 

(via multiple localized multicellular groups) are utilized for high-dimensional dynamic control, there 

is essentially one singular motor actor to which all relevant cortical systems become entrained.  It is 

unclear, then, how effective these systems would continue to be in the presence of other residual 
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natural motor behaviors. However, work by Orsborn, Carmena, and colleagues (Orsborn et al., 

2014)has shown that in cases of simultaneous control of BCI and overt movement, in their case a 

force hold behavior during a cursor task, monkeys were able to gain proficiency with the paradigm 

and their neuroprosthetic control skills were not completely disrupted by performing the 

simultaneous task, with the neural adaptation possibly facilitating the formation of a BCI-specific 

network. Other results from experiments in monkeys by Milovanovic, Moritz, and colleagues 

(Milovanovic et al., 2015) have shown that neural activity from a single hemisphere can be effectively 

decoupled to simultaneously control a BCI and ongoing wrist movement. 

 

Figure 28 - Changes in Cortical Activation from Early to Late Trials. Each brain map shows the mean HG 

activation changes for Day 1 vs. Day 2 (Pre-learned vs. Post-learned states) for each of the five target types T1 

through T5 (indicated by the 5 different colored arrows). As expected, there is an amplification of HG response 

around the control electrode, especially for up (T1) targets. The decrease in activity (green) in some frontal 

areas for downward (T4 and T5) targets along with an increase in activity (yellow) in some putative non-motor 

areas can be compared to previous results on ECoG BCI learning (Wander et al., 2013) 
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Other groups have examined the practicality of using unaffected cerebral hemispheres for 

non-invasive BCI control in stroke patients (Bundy et al., 2012)} and individuals with cerebral palsy 

(Faller et al., 2013), in both cases utilizing multi-hemispheric electroencephalographic (EEG) 

recordings to showcase the ability to co-opt an area to function as the primary BCI controller while 

monitoring contralateral activity. Previous work by our group, as described in Chapter 6, 

demonstrated that human subjects can learn a simultaneous BCI-motor control task using EEG, with 

interference from ipsilateral movements similar to what we have reported here for ECoG (Cheung et 

al., 2012).  BCI studies involving stroke patients typically utilize EEG, as it is rare to find stroke patients 

with ECoG implants (Leuthardt, Miller, et al., 2006) or more invasive microelectrode arrays 

(Jarosiewicz et al., 2013).  In the majority of the EEG cases, feasibility of BCI for stroke rehabilitation 

(or spinal cord injury (Faller et al., 2013)) is shown either by incorporating a complex FES (Daly et al., 

2009) or haptic feedback system (Gomez-Rodriguez, Peterst, et al., 2010) or utilizing very complicated 

‘whole brain’ classification approaches with the smeared EEG signals (Prasad et al., 2010), often with 

limited gains.  Some studies focus simply on communication with a BCI (Birbaumer, 2006) based on 

signals from the hemisphere unaffected by stroke (Bundy et al., 2012).  Two prior studies using ECoG 

from patients with chronic stroke, have shown that it is possible to detect similar arm- (Gomez-

Rodriguez, Grosse-Wentrup, et al., 2010) and hand-movement (Spüler et al., 2014) intentions from 

the damaged cortical zone and one further case has utilized this method to effect control of a robotic 

hand (Yanagisawa et al., 2011). However, coordinated control by pairing the damaged areas with the 

intact contralateral motor regions has not previously been shown. 

9.4 Discussion 
For BCIs to be functional in the real world, even for simple tasks like opening a jar, patients 

need to be able to utilize a BCI in coordination with their residual motor capabilities.  Our results 

show that for a person with significant hemiparesis, the stroke-affected hemisphere can learn to 

control an ECoG BCI in coordination with ipsilateral hand movements and successfully complete a 2D 

center-out task.  A diverse population of cortical networks in the stroke-affected hemisphere were 

recruited and entrained to achieve reliable 2D control in the presence of ipsilateral activation due to 

hand movements. 

Part of the successful acquisition of control in our patient can likely be attributed to early 

reorganization of the cortex after the perinatal stroke, as underscored by ipsilateral HG activity 
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observed during motor behavior screening. Whether these results also generalize to other chronic 

stroke models remains to be seen. Previous studies from our group and others have shown limited 

ipsilateral representation of movement in ECoG in non-stroke-affected subjects (Zanos, Miller and 

Ojemann, 2008; Scherer et al., 2009; Darvas et al., 2010).  Additionally, in nonhuman primate models, 

it has been shown that as cortical networks are optimized for bimanual limb control, there is a limited 

representation of ipsilateral limb kinematics in neural populations (Ganguly and Carmena, 2009). In 

LFP/ECoG recordings, this has been seen as detectable ipsilateral HG responses and a boosted beta 

response (Zanos, Miller and Ojemann, 2008) (with different ERD/ERS relationships (Blankertz et al., 

2010)).  Such ipsilateral activity could be a source of noise for BCI control (Prasad et al., 2010) or add 

more information to aid a bimanual task (Cheung et al., 2012). 

However, the confound in our subject is that these movements were heavily constrained to 

the equivalent movements of the right side.  Thus, to actually effect any overt limb movement, the 

patient had to also move their right side.  This, however, was not the case for isolated hand and wrist 

movements on the left side.  Interactions with various objects and external manipulation of the left 

hand and fingers, though not naturally dexterous, were found to be visually independent from the 

right hand with cortical activity centered on electrode 48.  This selection was supported as isolated 

manipulation of the right hand, showed a similar, though delayed and less intense, HG activation at 

electrode 48 (Figure 20).  From the surprisingly robust cortical response for the left hand, it was 

decided to use recordings from electrode 48 as the controller input for the BCI task.   

However, based on the observed ipsilateral effect, we hypothesized that it would be difficult 

for the patient to actually perform the bimanual parts of the task, namely, the diagonal targets 

(T2/T4). As seen in Figure 23, this is indeed the case, as performance and overall accuracy is extremely 

low for not only the diagonal cases, but any movement utilizing keyboard presses of the right hand. 

Thus, even for horizontal targets, in which the cursor should not be actively driven in the y+/y- 

directions (but this movement was not constrained), the ipsilateral motor activations serve as a 

confound for the system, preventing pure right and left movement along the horizontal (x+/x-). 

Nevertheless, much like traditional bimanual feedback and rehabilitation tasks (Peper et al., 2013), 

the patient learned to coordinate BCI control with hand movements and became proficient, with near 

straight diagonal trajectories as seen in the final run in Figure 22.   
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Our study also sheds light on possible cortex-wide mechanisms underlying the proficiency in 

the concurrent BCI-motor control task. By Day 2, the HG response at the control electrode for 

diagonal T2 targets is closer to the response for upwards T1 targets, while the HG response for target 

type T4 is closer to type T5 (Figure 24). Comparing the mean HG profiles during cursor control around 

the control electrode (Figure 25) versus other non-motor areas sheds further light on possible 

mechanisms of learning (Figure 28).  As seen in Figure 27, these non-motor areas become engaged in 

Day 2 and may play an important role in helping regulate HG activation at the control electrode. Some 

of these non-motor areas appear to align with areas previously implicated in motor and BCI learning 

(Wander et al., 2013), but a more precise comparison is difficult due to the limited coverage of the 

grid as well as the stroke-related characteristics of this subject. 

In conclusion, the high degree of accuracy in concurrent BCI control in coordination with 

existing motor capabilities suggests that concurrent BCI-manual control for stroke patients can be 

both valuable and feasible for long-term rehabilitation and therapy.  While no physical improvements 

were noted in the patient as a result of BCI use, the improvement in lateral coordination through BCI 

when coupled with a traditional rehabilitation regimen could potentially be a powerful future tool.  

In addition, as noninvasive and ECoG technologies continue to improve, the coupling of HG activation 

with existing control paradigms (Smith et al., 2014) could open the door to a host of novel avenues 

of inquiry (Wander and Rao, 2014) for patients with similar neuromuscular deficits. 

9.5 Expanding beyond cursors. 
Though there are distinct limitations to the scope of this case and its generalizability to other 

chronic stroke models, the fact that a subject with hemiparesis is able to effect such a high degree of 

control of a BCI cursor interface and that too in coordination with their existing intact physiology, 

suggests that this avenue of study of invasive BCI with stroke patients is both valuable and feasible 

for long term rehabilitation and therapy.  However, this task framework does not actually get us 

beyond the cursor model, even though it is analogous to limb reaching as per NHP studies on which 

the center-out task is largely based (Ganguly and Carmena, 2009; Orsborn et al., 2014; Shenoy and 

Carmena, 2014).  For true dexterous bimanual control of a hand robotic or prosthetic system, more 

degrees of freedom will be needed.  To that extent, having a better resolution of the related cortical 

areas, as well as a better framework for application and control will be needed. 
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Chapter 10: Resolving Hands: Macro vs. Micro ECoG 
 

Electrocorticographic (ECoG) signals recorded from the brain surface provide a powerful 

semi-invasive source of brain signals for direct control of hand prosthetics (Moran, 2010; Buzsáki, 

Anastassiou and Koch, 2012). Whether ECoG offers sufficient spatial resolution to allow accurate 

decoding of dexterous hand movements remains an important open question. In this chapter, we 

explore the limits of useful information contained in ECoG signals as captured by a variety of clinical 

and research grids from multiple subjects performing a host of hand manipulation tasks. Microgrids 

(µgrids) provide higher spatial resolution (in the mm range) compared to conventional ECoG grids 

(resolution in the cm range) but their utility for decoding fine-grained movements has been relatively 

unexplored. We applied a variety of classification techniques to µECoG data and compared decoding 

performance with macrogrid data. Using off-the-shelf methods such as support vector machines for 

classification, we show that µgrid recordings allow decoding accuracies of up to 97% for gross finger 

movements as well as near 90% accuracy across 7 grasping classes. Our results suggest that compared 

to macrogrids, µECoG may provide sufficient information to allow high-fidelity control of individual 

finger and grasp movements, opening the door to practical brain-computer interfaces for hand 

prosthetics. 

10.1 Significance 
Brain-computer interface (BCI) platforms can be broken down into the following components: 

signal acquisition, signal processing, and device output. Signal acquisition can be either non-invasive 

or invasive. Among the many electrophysiological modes, semi-invasive electrocorticography (ECoG), 

strikes a good balance between signal quality and recording robustness, while also allowing study of 

neural dynamics over distributed cortical areas (Moran, 2010). Current ECoG-based BCI paradigms 

screen for gross high frequency activity during certain modalities of movement. Electrodes showing 

activity correlated with periods of movement have their changes in high frequency mapped to a 

control signal; increasing spectral power beyond a linear threshold triggers the control signal output. 

This technique, while viable for simple control mappings, provides only a binary output of a positive 

or negative result. Typically, each electrode can provide only one control signal, meaning multiple 

degrees of freedom require multiplexing the identified control features. This leads to complications 

when controlling two or three degrees of freedom from two or three control features and the near 
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impossibility of controlling high-dimensional systems.  Controlling modern prosthetics in this way 

could be an effort in futility, as some manipulators precisely mimic more than 20 degrees of freedom 

present in the human hand(Kumar, Xu and Todorov, 2013). However, previous studies of the central 

and peripheral motor nervous systems suggest the presence of synergistic activations of 

musculoskeletal groups during coordinated movement, and that these “motor primitives” may be 

present at the level of the spinal column and possibly in higher levels of CNS (Blakely et al., 2009).  

This might be one avenue of investigation for dexterous movement with BCI. 

However, capturing these dynamics can challenging (Bundy et al., 2014).  Our group has 

previously shown that high gamma (75-200Hz) activity in primary motor cortex as recorded by 

standard electrocorticography (ECoG) shows high spatial preference for individual digit movements 

during overt finger flexion (Scherer et al., 2009).  In contrast, the average spatial activity in this 

medium during object grasping appears to show little unique spatial organization relative to the 

grasps performed (Pistohl et al., 2012).  However, this may be a factor of scale, as leveraging high 

resolution (3mm-spacing and below) ECoG grids can allow for better classification of finger 

movement (Wang et al., 2009).  In this study, we demonstrate the comparative robustness of µECoG 

for classification and BCI use as compared to standard clinical recordings. Furthermore, we show 

µECoG can allow for the spatial separation and identification of fingers during more complex grasping 

and hand manipulation behaviors.  In addition, we show that the theoretical utility of even clinical 

ECoG can be improved with just a slight decrease in scale.  There remains an open question as to 

whether ‘synergies’ or similar lower-dimensional postural components would distinguishable with 

ECoG, but it is clear that the resolution of standard ECoG grids should continue to be improved to 

one day utilize this schema for dexterous biomimetic volition control by a user of a virtual or robotic 

hand. 

10.2 Methods 

10.2.1 Subjects 
As with the previously described ECoG studies, patients with intractable epilepsy were 

implanted with platinum subdural ECoG electrodes for the purpose of seizure focus localization at 

the University of Washington’s Harborview Medical Center or the Seattle Children’s Hospital. 

Electrodes were placed by medical staff over the right hemisphere as per the clinical indications. The 

primary 8x8 electrode arrays consisted of 3mm diameter platinum pads spaced at either 1cm or 7.5 
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mm center-to-center and embedded in silastic (AdTech). In some cases, additional strips of electrodes 

were placed based upon clinical need.  Patients provided informed consent to participate as subjects 

for research activities during clinical monitoring under UW and SCH IRBs.  Relative placement of the 

implants for each subject can be seen in Figure 29.  Subject demographics and research involvement 

for this study can be seen in Table 4. Three additional subjects underwent intraoperative procedures 

as described in the following sections.  Relative implant sizes can be seen in Figure 30-a. 

Table 4 – Demographic information for implanted subjects. Listed for each subject are the implant type (macro, 
micro or mini based upon implant spacing and size), the hand manipulation tasks performed, as well as which hand 
was recorded by the CyberGlove.  For Macro-5, no hand recording was possible due to IV needles.  One patient from 
each group of implant type was used for comparison by classification analysis and is indicated in italics. 

 

10.2.2 Signal Recording 
Experimental recordings were taken at the patients’ bedsides without interrupting the 

primary clinical recordings. As per previous work from our group, data were acquired at 1200Hz using 

four synchronized sixteen-channel g.USBamps (GugerTec) connected to a high-performance Sager 

laptop computer (Blakely et al., 2009). Data were anonymized in accordance with Health Insurance 

Portability and Accountability Act mandate. Cortical potentials were referenced against a scalp 

electrode and digitized and processed in the BCI2000 software suite (Schalk et al., 2004).  

Additionally, hand movements were captured using a Cyberglove II system.  For each subject, the 

hand contralateral to hemisphere of implant was recorded.  Data were synchronized with ECoG 

within the same software setup. In some few cases, due to clinical intervention, the glove could not 

be worn by subject or had to be removed during the recording session.  This is reported in Table 4. 

Finger Flexion Grasping Hand Posture

Macro-1 11 M 1cm 5+pinch 6 objects -- R

Macro-2 12 M 1cm -- 6 objects -- R

Macro-3 50 F 1cm t,i+pinch 6 objects 5 poses L

Macro-4 45 F 1cm 5+pinch 6 objects -- R

Macro-5 34 F 1cm -- 6 objects -- --

Macro-6 19 M 1cm -- 6 objects -- L

Macro-7 19 M 1cm -- 6 objects -- L

Mini-1 11 F 7.5mm t,i+pinch 6 objects 5 poses R

Mini-2 16 F 7.5mm -- 3 objects -- R

Micro-1 49 F 3mm 5+pinch 6 objects -- R

Micro-2 38 F 3mm 5+pinch 6 objects -- R

Micro-3 30 M 3mm 5+pinch 6 objects 5 poses R

Table 1: Demographics and task information for implanted subjects.

DataGlove
Task Type

Subject ID Age Gender Grid Spacing
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Figure 29 - Clinical ECoG Implants by Subject. (a) Implant location for subjects with standard (1cm spacing) clinical 
ECoG arrays. Patient MR and CT scans were used to create 3D head model reconstructions showing the spatial 
arrangement of the implanted array in relation to the cortical tissue below. (b) Implant locations for subjects with 
7.5mm spaced clinical arrays (in red). 

 

10.2.3 Awake Craniotomy µECoG implants 
Three subjects were implanted with µECoG arrays during intraoperative surgical sessions. For 

inclusion in this study, the subjects had to have a surgical necessity for an awake craniotomy with 

epileptic lesions near sensorimotor cortex, in addition to being able to respond to visual cues during 

the intraoperative session. In an ideal situation, a subjects’ craniotomy window would have been 

large enough to expose primary sensorimotor cortex. This would allow stimulation mapping of the 

area to directly map areas of motor cortex eliciting hand movement. Unfortunately, the craniotomy 

window was typically inferior to hand motor cortex and without exposing areas associated with hand 

movement.  Thus, the grids were guided by the surgeon by sliding the implant subdurally in the 

direction corresponding to the most likely area associated with superior central sulcus.  To aid in this 

process, a quick-mapping technique based on traditional behavioral screening tasks(Wander et al., 

2013) used by our group was performed. This involved recording all 64 electrodes while the subject 

rested for 5 seconds. After the rest period, the subject was instructed to open and close their hand, 

hopefully activating areas of cortex associated with gross motor movement. Recording ended after 



www.manaraa.com

112 

 

10s and was processed for changes in high gamma (75-200Hz) between the rest period and hand 

movement. The results were visually displayed to the researcher and surgeon, as seen in Figure 30-

d. If the grid showed no activity, the grid was moved to the next most likely area based on pre-

operative MRI images.  

 

Figure 30 – The Microgrid Implants. a) Relative size of the microgrid. Standard clinical grids (left) have 3mm platinum 

disks spaced at 10mm center-to-center. The µgrid utilized contained 64 1.5mm diameter electrodes spaced at 3mm. 

b) Example of microgrid implant. Scale shown next to standard clinical forceps. All 64 contacts come out in a single 

wire split into four 16-contact pig-tails. Each pigtail was plugged into a single biosignal amplifier. c) Upper-left: 

intraoperative photo of the craniotomy of Subject 2850af, with artificial landmarks highlighted in yellow. The lead 

coming from the microgrid can be seen in white. The vasculature from the intraoperative photo was aligned with 

the vasculature in a pre-operative magnetic resonance angiogram (MRA, upper-right). Estimated artificial landmark 

location is highlighted in red. After alignment, 3 dimensional grid location is estimated to cover primary sensorimotor 

cortex (red square, lower). d) Screenshot of the quickmap program used to identify whether the grid was over motor 

cortex. Left columns show the unrolled grid (channels 1-64) vs RSA-value. The lowest dotted line in each plot 

indicates zero correlation with activity, followed by RSA=.1 above it, with the solid line at 0.5 RSA. Values above .1 

indicate weak positive correlation, and values approaching 0.5 indicate strong correlation. Right column shows a 

graphical representation of the grid, with a redder color indicating a stronger correlation. To ensure that noise did 

not contaminate the results, the raw signal (top row) was re-referenced four different ways to try to eliminate noise 

and identify signal: common average, amplifier bank, corner-reference, and pairwise referencing (2nd through 

bottom, respectively). 
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As the craniotomy window did not expose the central sulcus, it was important to also create 

an accurate estimation of the grid’s location beyond the behavioral screen. Pre-operative MR 

angiograms were performed. A cortical surface is generated from this volume using the Freesurfer 

reconstruction pipeline (Fischl, 2012). As intra-operative CT scans are not part of the clinical 

procedure, grid position relative to the craniotomy window was measured from the base of the grid 

at the hillock of PDMS material, see Figure 30-b, to the edge of the dural opening. Taking into account 

the direction of the visible wire in intraoperative photos and aligning the photo’s vasculature to that 

of the MR angiogram, we are able to estimate the position of the grid over the reconstructed cortical 

anatomy in conjunction with the quick map process. Figure 30-c shows the results of the 

reconstruction and estimation of cortical location for one subject. 

10.2.4 Visually Cued Hand Manipulation Tasks 
At the beginning of each recording session, standard clinical subjects performed an overt 

motor screening exercise, in addition to clinical motor evaluation. Typically, subjects were visually 

prompted to move their hand or tongue for three seconds with a three second rest period in between 

each movement. This was repeated about 20 times. Subjects then repeat the task, except imagining 

the prompted movement without executing an overt motion.  This was similar for the intraoperative 

subjects; after they were brought out of deep anesthesia and quick-mapping confirmed that the grid 

was over an area that showed increases in high gamma during hand movement, a screen was placed 

comfortably within visual range of the subject and the data-glove was put on the subjects’ right hand. 

The subjects were instructed to flex their outstretched hand into a fist when they saw a picture of a 

hand appear on the screen, and relax when it disappeared. Each cue was presented for three seconds 

followed by three seconds of rest, repeated a total of 10 times.  

Following the gross motor screening, subjects participated in a series of additional visually 

cued response tasks designed to elicit highly stereotyped but unique movements either for each 

finger digit or in relation to particular hand grasp types.  In the finger flexion task, a white silhouette 

of a hand was presented to the subject (‘rest’ phase). After two seconds, one of the five digits was 

colored or the index and thumb was highlighted (see Figure 31-a). The subject was instructed to flex 

the corresponding finger on their right hand. After another two seconds, the highlight was removed 

and the subject rested. This sequence was repeated 15 times for each of the six stimuli.  In the object 

grasping task, six prototypical hand grasps were elicited as seen in Figure 31-b.  In this case, however, 



www.manaraa.com

114 

 

the visual cue was shown to the researcher who then selected the object and handed it to the subject 

in their bed.  This prevented a reach and grasp phase, requiring the subject only to see the object, 

shape their hand, and hold it until removed by the researcher.  After a two to three second interval, 

another object was provided.  This was repeated 10-15 times for each object/grasp type.  To elicit 

more unique and dynamic hand movements, one additional task was added for later procedures.  In 

this task, subjects were first instructed on one of six hand poses: an open palm, a fist, thumbs up 

gesture, a cowabunga gesture (also known as the Hawaiian shaka or ‘hang loose’), a grasped claw 

with all fingers bent, and a dynamic curling closed motion splaying fingers open and then closing from 

little finger to thumb.  Subjects were cued visually with the word for the posture and given a six 

second compliance window.  After a 2-3 second rest period, another cue was provided.  This was 

repeated 10-15 times for each pose.  Differences in procedure length and administration was 

dependent on subject compliance and availability (see Table 4). 

 

Figure 31 – Visual Cues for Hand Manipulations Tasks. a) Finger Flexion - During rest periods, an empty silhouette 

of a hand was presented to the subject (top middle). Every two seconds one of five digits (or index and thumb for 

pinch) was highlighted for two seconds. Subjects were instructed to flex the indicated digit during cue 

presentation. b) Object Grasping – In this case, cue is presented to the researcher.  Over five second intervals, an 

object is shown and then handed by the researcher to subject.  Subject shapes their hand and holds object until 

removed at the end of the cue period. c) Hand Postures – As with the original task, subjects were cued to shape 

their target hand into one of five postures and one dynamic movement (curl). Subjects were previously instructed 

on expected hand postures. 
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10.2.5 Data Processing and Signal Analysis 
All channels recorded from the electrocorticographic grid were common average re-

referenced by subtracting the average signal recorded at all electrodes. This was done in an attempt 

to remove any common noise introduced by activity recorded at the scalp reference electrode in the 

electrically noisy hospital environment. As per previous ECoG studies from our group, the re-

referenced signals were band pass filtered for the high-gamma (HG) range (70-200 Hz) using a fourth-

order Butterworth filter (Darvas et al., 2010).  The square of the magnitude of the Hilbert Transform 

was then used to calculate a time-variant estimate of band-power (Wander et al., 2013).  Data were 

then log transformed in order to become approximately normally distributed for proper statistical 

analyses (Blakely et al., 2009).  To account for differences between recording sessions, this log-power 

estimate was further z-normalized with respect to the rest (behaviorally quiescent) periods for each 

channel and session. This signal is heretofore discussed as the HG signal or HG activation. Similar 

extrapolation was done for the lower frequency beta range (8-32 Hz) as well, though not used for 

primary analyses. 

As the trial numbers and durations were often not balanced, either due to subject compliance 

or available experimental time in the clinical setting, it is useful to use an alternative statistical 

measure to compare subject specific activation.  For every electrode and movement type, we 

calculated a high and low activation weight by comparing the distributions of HG and beta for each 

movement type with the corresponding rest distributions.  This provides an activity metric based 

upon the signed, squared cross-correlation value, a measure of how much of the variance in power 

across both movement and rest epochs was accounted for by the difference in the mean power 

between movement and rest epochs (Miller et al., 2007).  For convenience, this is referred to as the 

RSA values (HG or β RSA).  These can be used as additional features to measure and compare task-

related cortical activity across subjects (Miller et al., 2007). 

10.2.6 Classification of Hand Movements 

10.2.6a Feature Creation & Selection 

For direct comparison of activity and representation across the resolution types, a 

classification framework was created based upon three subjects, one from each implant type (see 

Table 1). Features for classification were constructed from the HG signal by taking the mean of the 
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log power over a number of different window lengths. From the glove data, 107ms was measured as 

the shortest duration of a single directional finger movement by any subject—i.e., the quickest they 

moved their finger down or up was 107ms. This was chosen as the shortest window, as it was the 

quickest response captured but may yet be a potentially reasonable granularity for controlling 

movement of a prosthetic device (Velliste et al., 2008).  186ms was the shortest directional 

movement measured from the ‘macrogrid’ patient (standard clinical implant). We hypothesized that 

larger windows would increase performance due to the fact that more samples would be contained 

in each feature (Drucker et al., 1997).  In a real-world BCI, however, this would lead to a tradeoff 

between accuracy and responsiveness, however, as it would take longer to make these more accurate 

predictions. We determined that four actions per second would be near the lower limit of useful 

responsiveness for granularities of finger movement yet more than enough for a single grasping 

behavior, and thus limited the largest window to 250ms. 

In order to achieve as accurate labels as possible, movement classes were labeled based upon 

the onset of movement as detected by the CyberGlove. Rest classes were labeled as beginning after 

the presentation of the rest instruction and ending after the presentation of the following movement 

instruction. The onset time was padded to allow for the completion of the preceding finger or hand 

movement. A small number of epochs were present in which the subject performed the wrong action 

or was provided the wrong object; these were verified by hand and omitted. 

10.2.6b Algorithm 

An SVM classifier with linear and RBF kernels was selected for classification. Though 

potentially slower than a pure regression based linear classier, SVM was chosen because it is fairly 

simple and commonly used algorithm in the BCI community and generally provides high performance, 

especially for multiple classes. The linear and RBF kernels did not yield significantly different results, 

and only the results of the linear kernel are shown. The scikit-learn implementations of the algorithm 

was used (Abraham et al., 2014; Sofiyanti, Fitmawati and Roza, 2015). 

10.2.6c Tasks 

Two classification tasks each were constructed for finger movements as well as for grasping. 

The first was a 7-class problem and was to distinguish between rest and the individual finger 

movements (plus pinch). Although the patients moved the indicated finger up and down during each 

trial, this task was merely to distinguish which finger was being moved. The second task was a 12-
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class problem. It consisted of rest class, as well as the up and down class for each finger (plus pinch). 

The two classification tasks were performed on each subject, with features constructed over the 

three different windows. The data in each were a 64-column matrix consisting of the log power in the 

high gamma band at each electrode. There were as many rows as there were samples. The number 

of samples varied, however, as the patients did not move their fingers for precisely the same amount 

of time in each trial, and due to the fact that as the window size increases the number of samples 

decreases. Further, due to the fewer microgrid samples, response error in the intraoperative session, 

there were not enough examples of all classes to perform 5-fold cross validation on some tasks.  In 

addition, for the 7.5mm case, the subject only performed thumb, index, and pinch actions, so the 

finger tasks were adapted to 4 and 6 classes, respectively. 

For the grasping behaviors, the first task was also a 7-class problem to distinguish between 

rest and the individual grasp/object types. However, after review of both glove recordings and task 

feedback, it was determined that there may be significant overlap in the grasp types and thus the 

‘object’ types were collapsed to 3 for a 4-class problem. This would also serve to boost the sampling 

size of the data.  From here, classification proceeded as with the fingers, but with 250ms as the only 

window. 

10.3 Results 

10.3.1 Finger Flexion 
Figure 32 and Figure 33 show the results of the finger flexion task for all subjects as well as 

the microgrid cases. Every digit movement for Micro-1 shows at least three electrodes with mean z-

scores above 0.5, and all but thumb have nine or more. The pattern of activity of high gamma activity 

associated with each digit movement is clearly spatially distributed for Micro-1 and Micro-2.  The first 

had significant thumb activity on the inferior edge of the grid (left column in Figure 32), while index, 

middle, ring, and pinky progressing further superior along the grid. This is explicitly outlined in Figure 

38 for more clarity.  Micro-2 had one issue, in that half of the grid (33-64) dropped out due to 

connector issues for that block.  Nevertheless, there is thumb-related activity in the middle of the 

grid, with each subsequent digit appearing along the posterior edge of the grid from inferior to 

superior, respectively.  Due to the relatively quiet responses for many subjects, as per low zero-

meaned z-score HG values, it can be useful to get a general idea of activity change from rest by 

examining the HG RSA for these same electrodes.   
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Figure 32 - HG response for Finger Flexion. For each subject the HG signal at each electrode is zero-meaned and z-

normed and plotted in relative spatial orientation for each finger type.  Heatmap scale is 0 to 1.5 (z-norms) such that 

task-relevant electrodes can be easily identified and compared across subjects.  In case of greyed out windows, the 

subject only performed thumb, index, and pinch movements.   

The trend for Micro-2 is confirmed here, though, is not as robust as in Micro 1.  Pinch activity 

for all three microgrid subjects showed surprising patterns of cortical activation. In both cases, areas 
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of cortex that increased in activity during thumb and index appear in pinch. (HG RSA boosts the case 

for Micro-3).  Areas that are associated with middle, ring and pinky finger are not co-activated to the 

level of index and thumb.  An overlay example for Micro 1 can be seen in Figure 38-a. 

 

Figure 33 - Active Electrodes during Finger Flexion. For each subject, the HG RSA metric at each electrode is plotted 

in relative spatial orientation for each finger type.  Heatmap is self-scaled by subject RSA values to show the degree 

of activity versus rest for each subject.  In case of greyed out windows, the subject only performed thumb, index, 

and pinch movements.   

For the standard clinical grids, the HG raster is relatively quiescent except for in the case of 

Macro-1 (0dd118). However, for this subject, the HG response is essentially the same across all finger 

movements, though it is boosted in the pinch case.  Due to the scale and placement of the grid (Figure 

29), it is possible some of this is due to sensory activation during pinch.  Regardless, there is no 
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discernable spatial mapping unlike the microgrids.  Referring to the HG RSA raster for these subjects, 

it is clear that there is some task related activation, though it is not unique nor robust across the 

finger types at this scale or analysis mode. 

For Mini-1 (6cc87c), with the smaller 7.5 mm clinical grid, the overall trend is similar to Macro-

1 with an amplified response for the pinch case, but still robust finger and thumb related activation.  

Unfortunately, without the other fingers, it is hard to make any claims about the capturing of any 

specific spatial localizations. However, several studies from our lab have previously examined the 

cortical dynamics during finger flexion (Shenoy et al., 2007; Kubánek et al., 2009; Scherer et al., 2009; 

Wang et al., 2010).  For the purposes of this study, the finger flexion recordings are primarily used to 

contrast the object grasping findings and provide an additional testing and comparison set for 

classification. 

10.3.2 Object Grasping 
Figure 34 and Figure 35 show the results of the object grasping task for all subjects as well as 

the microgrid cases. The additional subjects performing the grasping task underscores the SNR 

difference with the microgrid cases.  Even with poor compliance from the microgrid subjects in the 

complex intraoperative environment, reflected as mostly thumb and palmar interactions with the 

objects, the strength of the response is significantly louder than many of the macrogrid case.   

Here again, the HG RSA values help make better sense of the overall HG response.  For Micro 1, the 

grasping behavior is localized to the previously seen ring and pinky areas with some activity around 

the middle finger.  For Micro 3, the activation pattern seems quite random.  Unfortunately, further 

analysis showed a marked amount of external noise in the recording during that particular session.  

Micro-2, however, shows a marked amount of activation, especially with the objects which require a 

more precise grasp control and finger curl or closure (pen, case, and phone). 

For the standard clinical grids, the HG raster is again relatively quiescent except for in the case 

of Macro-1 (0dd118), Macro-5 (8afafd), and Macro-2 (3745d1).  However, the loud general 

activations, though with peaks centered on the same electrodes as before and supported by the RSA 

map, is indicative of a possible noise source during the task execution for these patients.  

Nevertheless, all show 2-4 localized spots of robust HG activity.  These were also active during the 

gross motor activations, indicating that these are most likely representing the physical “blob” that is 

the hand motor knob.   



www.manaraa.com

121 

 

 

Figure 34 - HG Response for Objects Grasping. For each subject the HG signal at each electrode is zero-meaned and 

z-normed and plotted in relative spatial orientation for each grasp type.  Heatmap scale is 0 to 1.5 (z-norms) such 

that task-relevant electrodes can be easily identified and compared across subjects.  In case of greyed out windows, 

the subject only performed three grasp types.  All subjects in the set on the left have 1cm spacing grids.   

Figure 35 - Active Electrodes for Hand Grasping. For each subject, the HG RSA metric at each electrode is plotted in 

relative spatial orientation for each grasp type.  Heatmap is self-scaled by subject RSA values to show the degree of 

activity versus rest for each subject.  In case of greyed out windows, the subject only performed three grasp types.   
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Finally, it is important to note that the activation for 6cc87c mimics that as during finger 

flexion, but is actually less intense except in for grasping the case.  Examining the glove behavior, 

shows that most of the variance in the joint movements actually comes from thumb and lower palm.  

The lower activation, thus might be from a less robust hand interaction as well as the reduction of 

movements, since there were multiple finger flexions per cue previously as compared to one fairly 

small hand movement for this subject. 

10.3.3 Hand Postures 
The overall reduced activation for Mini-1 (6cc87c) holds true during the hand postures, 

though it does scale nicely with movement.  Open palm shows almost no significant activation, 

though the potential stabilizing of the palm is distinct from rest (as seen with the HG RSA).  However, 

activation increases for the moving curl posture as well as the more extreme claw.  Furthermore, as 

compared with the finger and grasping activations, there seems to be a more tightly thumb-related 

area when comparing fist, curl and claw, with the more thumb-engaging ‘thumbs up’ and cowabunga.   

 

Figure 36 - HG Response for Hand Postures. For each subject the HG signal at each electrode is zero-meaned and z-

normed and plotted in relative spatial orientation for each hand posture.  Heatmap scale is 0 to 1.5 (z-norms) such 

that task-relevant electrodes can be easily identified and compared across subjects.  Each subject shown has a 

different grid-type. 
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This was potentially obfuscated by more general whole hand activations during the object 

grasping the limited tasks and repetition during finger flexion, though ideally the signal localization 

would be as robust as that in the Micro-1 case previously.  Comparatively, Macro-3 (6b68ef) shows 

what would be expected for a standard clinical grid with only a couple electrodes strongly activated 

during the fist and curl cases centered in a 2x2cm zone, representing, as before, the general hand 

knob area. 

 

Figure 37 - Active Electrodes for Hand Postures. For each subject, the HG RSA metric at each electrode is plotted in 

relative spatial orientation for each hand posture.  Each Heatmap is self-scaled by subject RSA values to show the 

degree of activity versus rest for each subject.  Each subject shown has a different grid-type. 

10.3.4 Active Electrodes & Theoretical Utility 
As described previously, the signed, squared cross-correlation measure (RSA) can show how 

many electrodes are active during task compliance. For each subject and task type, the HG and β RSAs 

were calculated for all electrodes.  For each electrode with significant task-relevant activity (non-zero 

HG or β RSA), an aggregate time-frequency representation from 0-200 Hz for each task class was built 

to examine the frequency power change and distribution over time (Figure 38-b).  This was then 

compared to the z-scored HG and the digital flexion dynamics from the Cyberglove data (Fig. 10a) to 

determine the validity of the task-relevant activity for each electrode (Blakely et al., 2008).   
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Figure 38 – Characterizing Active Electrodes. a) An example of zero-mean z-scored HG is shown for pinching 

behavior of Micro-1.  The top plot is a trace of joint trajectories during the task.  Below is the channel raster 

of HG over time for each electrode.  b) Time-frequency representations of frequency band-power from 0-200 

HZ over the pinch period for RSA-significant electrodes for Micro-1.  c) A potential spatial map for finger 

localization is overlay on Micro-1’s HG activity during pinching.  

Additionally, this process helps validate finger localization spatial maps such as seen in Figure 

38-c. The electrodes showing correlation in onset and/or duration were tabulated as ‘active 

electrodes’ as seen in Table 5.  This also serves to provide a gut check for the activity plots in the 

previous figures.  In the case of Macro-1 (0dd118), the HG and RSA plots both indicate a high degree 

of activity, however, there are only around 3-6 active, relevant electrodes for this subject. 

Table 5 – Active Electrodes and Theoretical Utility. Active electrodes are identified from comparison of RSA 
significance, HG response, and digit flexion.  (Beta || HG RSA > 0). The TU metric for each subject is then tabulated 
as the ratio of active electrodes to viable recording electrodes. 

 

The ratio of the active electrodes to the number of valid channels (channels initially screened 

to be of appropriate recording quality and SNR) is determined as the ‘Theoretical Utility’ of each 

Finger Flexion Grasping Hand Posture

Macro-1 1cm 6 3 -- 0.07

Macro-2 1cm -- 2 -- 0.03

Macro-3 1cm 13 14 31 0.30

Macro-4 1cm 17 17 -- 0.27

Macro-5 1cm -- 34 -- 0.53

Macro-6 1cm -- 24 -- 0.38

Macro-7 1cm -- 17 -- 0.27

Mini-1 7.5mm 47 50 42 0.72

Mini-2 7.5mm -- 17 -- 0.27

Micro-1 3mm 56 64 -- 0.94

Micro-2 3mm 32 32 -- 0.50

Micro-3 3mm 53 2 27 0.43

Subject ID Grid Spacing
Task Type Theoretical 

Utility

Table 2 - Active Electrodes (Beta || HG RSA > 0)
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subject’s recording and grid, shown in Table 2.  This is primarily used as a metric of data quality and 

to confirm the selection of subjects for classification and comparison and prevent garbage in, garbage 

out.  Note, however, even though Macro-4 (77da65) does not have the highest TU for the macrogrids, 

this subject performed a full finger flexion task.  Had Macro-3 (6b68ef) performed a full complement 

of finger movements, they would have been chosen for classification. 

10.3.5 Classification Performance 
Classification performance across the various classification tasks is shown in Table 3, below.  

The number given is the mean ratio correct across five-fold cross-validation using features 

constructed over the given window. It is important to note that these numbers on their own are 

somewhat misleading because of an unequal distribution of classes. In the presentation of the task 

to the patient, each instruction to move any finger or perform a grasp was preceded by a duration of 

time where they were instructed to rest. This means that there are significantly more data labeled 

rest than any particular movement. For this reason random performance would not be expected to 

produce a mean ratio correct of 1/7. Also note that the differing numbers of samples between the 

grid patients is due to two factors. First, as explained above, a significant portion of the microgrid 

data had to be discarded prior to analysis based on faulty contacts during the awake craniotomy or 

other issues related to the intraoperative setting. Second, the subjects took different amounts of time 

to move their fingers or flexed multiple times after cue, resulting in different numbers of samples 

generated during feature selection. Those marked as a dash did not contain enough data points from 

each class to perform 5-fold cross-validation. The classifiers generating the matrices were trained on 

a random 80% of the data and tested on the remaining 20%. The times shown correspond to the 

amount of time over which the log power in the high gamma band was averaged in order to produce 

features. The macrogrid remained essentially unclassifiable, while the microgrid yielded accuracy as 

high as 93% on the 12-class problem and 97% on the seven-class problem. Surprisingly, the minigrid 

(7.5mm) also showed as high as 90% for classification of fingers, though this is for a much simpler 4 

class set in which the thumb and index are quite separable and pinch and rest are also quite unique. 

The performance for the grasp classes drops to 50% which, while not quite as poor as with the 

macrogrid, is quite bad considering that this is also for the collapsed classes which should have more 

data and useable observations. SVMs using an RBF rather than a linear kernel did not significantly 

increase the classification accuracy (data not shown). 
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Table 6 - Classifier Performance for Hand Manipulation Tasks. Results are shown for Support Vector 

Machine (SVM) classification across a series of classification tasks.  The finger tasks consisted of distinguishing 

between rest, pinch, and gross finger movement or distinguishing between rest, pinch, and the direction of 

movement for each finger.  The grasp tasks consisted of distinguishing between all 6 object grasps and rest or 

a collapsed set of 3 objects/grasps and rest. Numbers given are the mean ratio correct across 5-fold cross 

validation. Times shown are the size of the window over which the ECoG signal was averaged during feature 

generation. The first task was simply to distinguish between rest, pinch, and movement of the five fingers. 

Note that the microgrid drastically outperforms the macrogrid, and that performances for finger classification 

generally increases with window size.  

10.4 So What? 
These results show that ECoG macrogrids do not capture enough information to consistently 

and accurately predict dexterous hand movements.  This is shown based both on a measure of the 

utility of the recorded data and utilizing machine learning techniques at reasonable granularities for 

prosthetic control to compare the wide disparity in information density between macro- and 

microgrids. While such information might eventually be captured using more advanced techniques 

or developing new algorithms(Murphy et al., 2016), we instead advocate the adoption of the ECoG 

microgrid for motor-related BCI development as a realistic and significant means of acquiring an ideal 

signal for control while maintaining the invasiveness-SNR tradeoff (Moran, 2010).  All of the analyses 

performed were in parallel to existing BCI studies utilizing many of the same subjects and thus the 

direct applicability to BCI was never far from mind. For example, the time windows chosen for feature 

construction were selected to provide reasonable response time if afforded by a prosthetic. The 

classification techniques were chosen because they require minimal tuning (Spüler et al., 2014).  This 

107 186 250

Gross Finger Movement (7) 0.940 0.970 0.969

Finger Direction (12) 0.842 0.926 --

Object Gripping (7) -- -- 0.889

Simple Grasps (4) -- -- 0.980

Gross Finger Movement (4) 0.832 0.866 0.902

Finger Direction (6) 0.820 0.891 --

Object Gripping (7) -- -- 0.508

Simple Grasps (4) -- -- 0.533

Gross Finger Movement (7) 0.389 0.406 0.389

Finger Direction (12) 0.400 0.431 --

Object Gripping (7) -- -- 0.152

Simple Grasps (4) -- -- 0.521

macro (1cm)

Table 3 - Support Vector Machine (SVM) Classification Results

Grid Type 

(spacing)
Classification Task (classes)

SVM Window Length (ms)

micro (3mm)

mini (7.5mm)
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means that in research settings classifiers could realistically be trained as the patients were 

connected to a prosthetic without needing lengthy grid searches over the parameter space.  

However, this analysis does not quite indicate whether or not a simple finger movement task 

or semi-static grasping flexion such as the ones analyzed here would be sufficient to train a regressor 

or other system to correctly output arbitrarily complex movements in the future. The dimensionality 

reduction of the brain-space before analysis likely impedes any immediate translation back to 

movements beyond what was presented as training data. Even if computational power accessible in 

a practical BCI setting was not an issue, and if all the dimensions of the brain data were passed to the 

algorithm, it would still not be guaranteed to accurately predict arbitrary movements. To understand 

why this might be so, imagine if a regressor were given all dimensions and was able to correctly 

recreate thumb and forefinger movement; it would surely be able to recreate the thumb and 

forefinger pinch. However, it is currently unknown if complex composite motions such as a two-finger 

pinch are composed only of the cortical superposition of a thumb and forefinger movement. This is 

certainly not the case when examining components of the muscular physiological representation 

(synergies) (Santello, Flanders and Soechting, 1998; Desmurget et al., 2014). It is an open research 

question as to whether or not such movements in fact are encoded as more complex informational 

cascades between motor areas, etc. in which case the training task would have to be significantly 

more complex in order to be capable of generating arbitrary future movements (Wong et al., 2013).  

Nevertheless, the ability to localize spatially and identify individual movements in the microscale even 

with the challenges of the intraoperative recordings is promising as it reflects the potential 

expandability of ECoG as a recording modality (Wander and Rao, 2014). 

Of course, while this study makes a compelling case for the promising role of ECoG microgrids 

as a foundation for sophisticated BCIs, several caveats remain. First, it is important to note that these 

studies were carried out on individual, separate subjects. It is possible that a particular macrogrid 

patient is simply not a strong candidate for ECoG-based BCI, regardless of the spatial resolution of 

the grid (Wander et al., 2013). A patient with both a macro- and a micro- grid or an overlapping 

system, as seen in some animal implants (Viventi et al., 2011; Orsborn et al., 2015), would be 

extremely informative for our purposes; however, due to clinical protocol and practical 

considerations, we have not yet been able to realize this arrangement at UW unlike at some other 

institutions (Bleichner et al., 2016).  Second, it is possible that more advanced algorithmic techniques 
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or more nuanced feature selection would be able to capture sufficient information from a macrogrid 

to decompose complex hand movements. Stronger conclusions could be also be drawn from an 

analysis of additional subjects with ‘better’ coverage and higher TUs.  Other avenues to be pursued 

include a more in-depth examination of the temporal component of the data to see if there is a 

temporal distribution in the grips that could be used in concordance with the spatial representation 

or one could examine the phase coherence of high-gamma during the different grip phases (Darvas, 

Ojemann and Sorensen, 2009).  Further work is also needed on chronic long-term recordings with 

these types of grids. Even with these considerations, however, we believe ECoG microgrids remain 

an extremely promising way forward. The strength of our analysis is to show that a microgrid 

combined with off-the-shelf implementations of classification and regression algorithms allow for 

robust characterization of hand movements for further utilization in a BCI framework.  µECoG is a 

promising technique that brings sophisticated BCIs one step closer to reality. 
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Chapter 11: Conclusion 
 

For individuals with neuromuscular impairments, brain-computer interfaces (BCIs) provide 

the potential for neurologic restoration or improved interactions with their daily environments (Daly 

et al., 2013). Whether through schemes for rehabilitation (Daly & Wolpaw, 2008; Pfurtscheller, 

Muller-Putz, Scherer, & Neuper, 2008) or direct replacement of lost sensorimotor function (Bensmaia 

& Miller, 2014; Daly et al., 2013; Velliste et al., 2008) or communicative ability (Birbaumer, 2006; 

Wolpaw et al., 2002a), the field has given hope of improved neural function to millions of individuals 

(Wolpaw & Wolpaw, 2012).  For those with CNS injury or limb amputation, one proposed and 

commonly tested mode of BCI control involves recording cortical signals and translating derived signal 

features correlated with executed or imagined movements to devices designed for functional 

restoration in the absence of natural effectors (Wang et al., 2013).  Unfortunately, the requirements 

for real world control, such as natural movement with hands, or hand analogs, for daily tasks such as 

opening a jar with two hands can be inordinately complex.  In these cases, especially ones requiring 

more dexterity and manipulation such as playing the piano, BCIs must be functional in a more 

bimanual context with patients potentially utilizing their interface in coordination with other motor 

behavior.   

However, due to the nature of the typical target populations, for example patients with 

amyotrophic lateral sclerosis (ALS) or brainstem stroke or spinal cord injury, in which there is 

significant degradation of volitional physical motor ability, much of the research on BCIs has focused 

on developing assistive devices for situations in which there is no motor ability remaining  (Curran 

and Stokes, 2003).  Yet, there is a large population of patients that retain some residual motor 

function, who could benefit significantly from a targeted BCI that incorporates this residual function, 

especially in a bimanual control schema (Buma et al., 2010).  Our work as described in this dissertation 

attempts to bridge that gap and provide a framework for consideration in the development of future 

BCI technologies.  In addition, we provide a context regarding expanding the traditional ECoG 

modality.  When combined together, our hope is that thinking about bimanual aspects of control and 

motor representation will provide a better context in which high-resolution ECoG signals are 

processed and translated to robotic control (for example within the Adroit framework developed by 
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Emo Todorov and the GridLab).  However, until then, there is significant additional work to be done 

before true dexterous bimanual control is possible. 

Final Thoughts on Bimanuality 
The bimanual process of BCI control and overt hand control seems extremely unnatural 

behaviorally and required several degrees of mental abstraction on the part of the “successful” users.  

Nevertheless, as we make the assumption that motor-BCI interactions are not that dissimilar from 

complex motor tasks, this type of coordination might not be unnatural for the underlying motor 

networks involved, especially for upper limb control.  Natural movements almost always require the 

coordination of different limbs (for example, during walking the legs are coordinated for gait while 

the arms swing in particular rhythmicity).  When we observe only how an individual’s two arms might 

move, we can see that there is a natural tendency to move both arms in some correlated fashion.  

Yet, we can also clearly operate each arm or hand alone.  

In general, arm movements can be divided into three categories:  

1) Unimanual movements, where only one of the arms moves. Some movements are typically 

unimanual, such as writing or drawing.  

2) Symmetric bimanual movements, where both arms move together or in opposite directions 

around a plane of symmetry. Examples of symmetric limb movements are hand clapping, walking, 

hand movements associated with speech.  

3) Non-symmetric bimanual movements, where the two hands move in a nonsymmetric fashion, 

for example: tying shoelaces, playing the piano or violin, and some kinds of dancing. 

If one executes a movement involving more than one limb – one actually performs at least 

two movements. To that extent, inter-limb-coordination may be considered as generation of a 

“unitary motor action” from elements of several movements. For bimanual movements, typically the 

more different the movement executed simultaneously by the two hands, the greater the difficulty. 

For example, it is very easy to draw a triangle or a circle using one hand. But, to draw a triangle with 

one hand and simultaneously draw a circle with the other is quite tricky.  However, drawing two 

circles (or triangles) simultaneously, using both hands separately for each is substantially easier. This 

simple observation may indicate some of the restrictions and preferences of the motor system as this 

suggests that there are different types of bimanual movements and that they are not merely the sum 
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of two unimanual movements.  Based on the described complexity of the system in question, this is 

not totally absurd and, in fact, these are included in the concept of coordination.  

To execute any movement, the motor system might compute or generate desired values of 

endpoints for each point in time for each muscle, joint and limb. This type of complex computation 

as we would normally consider it is, no doubt, a time-consuming process. Therefore, it also 

reasonable that the nervous system contains an internal representation of compound bimanual 

movements as unitary motor actions. An important feature of the system is the redundancy in the 

degrees of freedom. Namely, each movement can be executed in several different ways. Bernstein 

(Bernstein, 1967) defined motor coordination as “the process of mastering redundant degrees of 

freedom of the moving organ, in other words its conversion to a controllable system.” In other words, 

this mastery means finding some optimal time-efficient algorithms to control a high degree of 

freedom (DF) system.  This “controllable system” is a real time computational one. Therefore, 

minimization of the time required for each computation during the movement is of prime 

importance. Let us assume that “easy” motor tasks (like symmetrical bimanual movements) are less 

demanding computationally, while harder tasks requires more complex, time-consuming 

computation. To apply this approach to definitions of difficulty for “bimanual coordination,” we may 

define coordination requiring less computations – as “easier.” Looking at the same issue in terms of 

DF, we may describe “difficulty” as follows: the number of DF of a movement proportional to the 

number of joints associated with it. In relation to bimanual coordination, we introduce the term: 

“Functional DF (FDF),” which is the actual number of independent uses of the joints while a certain 

movement is executed. This is to indicate that the system may be designed to reduce the actual 

number of DF while executing a certain movement. Note that the number of independently moving 

joints is always equal to or less than the anatomical number of joints in the given limb (DF ≥ FDF). The 

difficulty in bimanual coordination is, therefore, proportional to the level of interlimb independence 

in the movement: namely, it is proportional to the FDF.  

In summary, we suggest that the level of difficulty of interlimb coordination reflects the need 

to increase the number of controlled degrees of freedom in order to execute the particular 

movement. To demonstrate the interesting impact of such an approach, especially with BCI and 

manual coordination, let us briefly consider an example from robotics. What are the differences 

between robots and humans from a bio/mechanical point of view? The most striking difference is the 
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perfectly smooth and very rapid performance of multi-joint and multi-limb manipulations by humans 

as compared with many robots.  A primary advantage of the biological brain is its ability to coordinate 

the joints in both time and space in a highly dynamically efficient mode. While the timing problem is 

readily solved in robotics, the space problem (where to place the joint) remains a restricting factor. 

To generate a finer movement by a robot (particularly in space) – we need to increase the number of 

DF. Consequently, the cost in computational demands rises exponentially! These computational 

problems limit the possible number of joints in standard artificial systems. In simplistic terms, one 

could say that the robots are limited by the fact that the number of FDF is always equal to the DF (the 

sum of the degrees of freedom of the joints). The biological brain, however, seems to be able to 

reduce the number of DF to number of FDF according to functional demands. This means that our 

higher cognitive centers do not have to continuously calculate the coordinates for each joint, but only 

for those independent joints for which we must make dynamic changes due to environmental 

constraints (as per sensory feedback).  This is extremely relevant to the BCI control problem as we 

extrapolate beyond cursors to systems with innately higher degrees of freedom that also require 

higher levels of abstraction from the user for optimal dexterous control.  Overall, the field of neural 

engineering or neuroprosthetic control has only just started to open Pandora’s box in regards to the 

factors that will allow for truly functional, effective BCI applications.  A bimanual approach is but one 

more important aspect that may lead us out of the rabbit hole and towards a more integrative and 

successful solution. 
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